Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Photosynth Res ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38907135

RESUMEN

The ring-like peripheral light-harvesting complex 2 (LH2) expressed by many phototrophic purple bacteria is a popular model system in biological light-harvesting research due to its robustness, small size, and known crystal structure. Furthermore, the availability of structural variants with distinct electronic structures and optical properties has made this group of light harvesters an attractive testing ground for studies of structure-function relationships in biological systems. LH2 is one of several pigment-protein complexes for which a link between functionality and effects such as excitonic coherence and vibronic coupling has been proposed. While a direct connection has not yet been demonstrated, many such interactions are highly sensitive to resonance conditions, and a dependence of intra-complex dynamics on detailed electronic structure might be expected. To gauge the sensitivity of energy-level structure and relaxation dynamics to naturally occurring structural changes, we compare the photo-induced dynamics in two structurally distinct LH2 variants. Using polarization-controlled 2D electronic spectroscopy at cryogenic temperatures, we directly access information on dynamic and static disorder in the complexes. The simultaneous optimal spectral and temporal resolution of these experiments further allows us to characterize the ultrafast energy relaxation, including exciton transport within the complexes. Despite the variations in PPC molecular structure manifesting as clear differences in electronic structure and disorder, the energy-transport and-relaxation dynamics remain remarkably similar. This indicates that the light-harvesting functionality of purple bacteria within a single LH2 complex is highly robust to structural perturbations and likely does not rely on finely tuned electronic- or electron-vibrational resonance conditions.

2.
ACS Omega ; 9(20): 22506-22507, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38799359

RESUMEN

[This corrects the article DOI: 10.1021/acsomega.3c05895.].

3.
ACS Omega ; 8(43): 40005-40014, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37929138

RESUMEN

Chlorophylls (Chls) are known for fast, subpicosecond internal conversion (IC) from ultraviolet/blue-absorbing ("B" or "Soret" states) to the energetically lower, red light-absorbing Q states. Consequently, excitation energy transfer (EET) in photosynthetic pigment-protein complexes involving the B states has so far not been considered. We present, for the first time, a theoretical framework for the existence of B-B EET in tightly coupled Chl aggregates such as photosynthetic pigment-protein complexes. We show that according to a Förster resonance energy transport (FRET) scheme, unmodulated B-B EET has an unexpectedly high range. Unsuppressed, it could pose an existential threat: the damage potential of blue light for photochemical reaction centers (RCs) is well-known. This insight reveals so far undescribed roles for carotenoids (Crts, this article) and Chl b (next article in this series) of possibly vital importance. Our model system is the photosynthetic antenna pigment-protein complex (CP29). Here, we show that the B → Q IC is assisted by the optically allowed Crt state (S2): The sequence is B → S2 (Crt, unrelaxed) → S2 (Crt, relaxed) → Q. This sequence has the advantage of preventing ∼39% of Chl-Chl B-B EET since the Crt S2 state is a highly efficient FRET acceptor. The B-B EET range and thus the likelihood of CP29 to forward potentially harmful B excitations toward the RC are thus reduced. In contrast to the B band of Chls, most Crt energy donation is energetically located near the Q band, which allows for 74/80% backdonation (from lutein/violaxanthin) to Chls. Neoxanthin, on the other hand, likely donates in the B band region of Chl b, with 76% efficiency. Crts thus act not only in their currently proposed photoprotective roles but also as a crucial building block for any system that could otherwise deliver harmful "blue" excitations to the RCs.

4.
ACS Omega ; 8(43): 40015-40023, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37929150

RESUMEN

Chlorophylls (Chls) are known for fast, subpicosecond internal conversion (IC) from ultraviolet/blue absorbing ("B" or "Soret" states) to the energetically lower, red light-absorbing Q states. Consequently, excitation energy transfer (EET) in photosynthetic pigment-protein complexes involving the B states has so far not been considered. We present, for the first time, a theoretical framework for the existence of B-B EET in tightly coupled Chl aggregates such as photosynthetic pigment-protein complexes. We show that according to a Förster resonance energy transport (FRET) scheme, unmodulated B-B EET has an unexpectedly high range. Unsuppressed, it could pose an existential threat-the damage potential of blue light for photochemical reaction centers (RCs) is well-known. This insight reveals so-far undescribed roles for carotenoids (Crts, cf. previous article in this series) and Chl b (this article) of possibly vital importance. Our model system is the photosynthetic antenna pigment-protein complex (CP29). The focus of the study is on the role of Chl b for EET in the Q and B bands. Further, the initial excited pigment distribution in the B band is computed for relevant solar irradiation and wavelength-centered laser pulses. It is found that both accessory pigment classes compete efficiently with Chl a absorption in the B band, leaving only 40% of B band excitations for Chl a. B state population is preferentially relocated to Chl b after excitation of any Chls, due to a near-perfect match of Chl b B band absorption with Chl a B state emission spectra. This results in an efficient depletion of the Chl a population (0.66 per IC/EET step, as compared to 0.21 in a Chl a-only system). Since Chl b only occurs in the peripheral antenna complexes of plants and algae, and RCs contain only Chl a, this would automatically trap potentially dangerous B state population in the antennae, preventing forwarding to the RCs.

5.
J Phys Chem Lett ; 13(5): 1258-1265, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35089716

RESUMEN

The high-resolution crystal structure of the trimeric major light-harvesting complex of photosystem II (LHCII) is often perceived as the basis for understanding its light-harvesting and photoprotective functions. However, the LHCII solution structure and its oligomerization or aggregation state may generally differ from the crystal structure and, moreover, also depend on its functional state. In this regard, small-angle scattering experiments provide the missing link by offering structural information in aqueous solution at physiological temperatures. Herein, we use small-angle scattering to investigate the solution structures of two different preparations of solubilized LHCII employing the nonionic detergents n-octyl-ß-d-glucoside (OG) and n-dodecyl-ß-D-maltoside (ß-DM). The data reveal that the LHCII-OG complex is equivalent to the trimeric crystal structure. Remarkably, however, we observe─for the first time─a stable oligomer composed of three LHCII trimers in the case of the LHCII-ß-DM preparation, implying additional pigment-pigment interactions. The latter complex is assumed to mimic trimer-trimer interactions which play an important role in the context of photoprotective nonphotochemical quenching.

6.
J Am Chem Soc ; 143(33): 13167-13174, 2021 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-34374520

RESUMEN

A combination of conductive atomic force microscopy (AFM) and confocal fluorescence microscopy was used to measure photocurrents passing through single trimeric photosytem I (PSI) complexes located in the vicinity of single gold nanorods (AuNRs). Simultaneous excitation of PSI and of the AuNR longitudinal plasmon mode and detection of photocurrents from individual PSI in relation to the position of single AuNRs enable insight into plasmon-induced phenomena that are otherwise inaccessible in ensemble experiments. We have observed photocurrent enhancement by the localized plasmons by a factor of 2.9 on average, with maximum enhancement values of up to 8. Selective excitation of the longitudinal plasmon modes by the polarization of the excitation laser enables controllable switch-on of the photocurrent enhancement. The dependence of the extent of enhancement on the distance between PSI and AuNRs indicates that, apart from the enhancement of absorption, there is an additional enhancement mechanism affecting directly the electron transport process. The present study provides deeper insight into the molecular mechanisms of plasmon-enhanced photocurrents, not only in PSI but also potentially in other systems as well.

7.
Molecules ; 26(11)2021 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-34204994

RESUMEN

Chlorophylls and bacteriochlorophylls, together with carotenoids, serve, noncovalently bound to specific apoproteins, as principal light-harvesting and energy-transforming pigments in photosynthetic organisms. In recent years, enormous progress has been achieved in the elucidation of structures and functions of light-harvesting (antenna) complexes, photosynthetic reaction centers and even entire photosystems. It is becoming increasingly clear that light-harvesting complexes not only serve to enlarge the absorption cross sections of the respective reaction centers but are vitally important in short- and long-term adaptation of the photosynthetic apparatus and regulation of the energy-transforming processes in response to external and internal conditions. Thus, the wide variety of structural diversity in photosynthetic antenna "designs" becomes conceivable. It is, however, common for LHCs to form trimeric (or multiples thereof) structures. We propose a simple, tentative explanation of the trimer issue, based on the 2D world created by photosynthetic membrane systems.


Asunto(s)
Cianobacterias/metabolismo , Complejos de Proteína Captadores de Luz/química , Complejos de Proteína Captadores de Luz/metabolismo , Plantas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Transferencia de Energía , Modelos Moleculares , Fotosíntesis , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Conformación Proteica , Multimerización de Proteína
8.
J Phys Chem B ; 125(14): 3538-3545, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33818091

RESUMEN

The excitation energy transfer (EET) from the bacteriochlorophyll (BChl) Soret band to the second excited state(s) (S2) of carotenoids in pigment-protein complexes of purple bacteria was investigated. The efficiency of EET was determined, based on fluorescence excitation and absorption spectra of chromatophores, peripheral light-harvesting complexes (LH2), core complexes (LH1-RC), and pigments in solution. Carotenoid-containing and carotenoid-less samples were compared: LH1-RC and LH2 from Allochromatium minutissimum, Ectothiorhodospira haloalkaliphila, and chromatophores from Rhodobacter sphaeroides and Rhodospirillum rubrum wild type and carotenoid-free strains R-26 and G9. BChl-to-carotenoid EET was absent, or its efficiency was less than the accuracy of the measurements of ∼5%. Quantum chemical calculations support the experimental results: The transition dipole moments of spatially close carotenoid/BChl pairs were found to be nearly orthogonal. The structural arrangements suggest that Soret EET may be lacking for the studied systems, however, EET from carotenoids to Qx appears to be possible.


Asunto(s)
Proteínas del Complejo del Centro de Reacción Fotosintética , Rhodobacter sphaeroides , Bacterioclorofilas , Carotenoides , Chromatiaceae , Ectothiorhodospira , Transferencia de Energía , Complejos de Proteína Captadores de Luz/metabolismo , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Proteobacteria/metabolismo , Rhodobacter sphaeroides/metabolismo , Espectrometría de Fluorescencia
9.
Phys Chem Chem Phys ; 23(14): 8731-8738, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33876032

RESUMEN

In addition to (bacterio)chlorophylls, (B)Chls, photosynthetic pigment-protein complexes bind carotenoids (Cars) that fulfil various important functions which are not fully understood, yet. However, certain excited states of Cars are optically one-photon forbidden ("dark") and can potentially undergo excitation energy transfer (EET) to (B)Chls following two-photon absorption (TPA). The amount of EET is reflected by the differences in TPA and two-photon excitation (TPE) spectra of a complex (multi-pigment) system. Since it is technically and analytically demanding to resolve optically forbidden states, different studies reported varying contributions of Cars and Chls to TPE/TPA spectra. In a study using well-defined 1 : 1 Car-tetrapyrrole dyads TPE contributions of tetrapyrrole molecules, including Chls, and Cars were measured. In these experiments, TPE of Cars dominated over Chl a TPE in a broad wavelength range. Another study suggested only minor contributions of Cars to TPE spectra of pigment-protein complexes such as the plant main light-harvesting complex (LHCII), in particular for wavelengths longer than ∼600/1200 nm. By joining forces and a combined analysis of all available data by both teams, we try to resolve this apparent contradiction. Here, we demonstrate that reconstruction of a wide spectral range of TPE for LHCII and photosystem I (PSI) requires both, significant Car and Chl contributions. Direct comparison of TPE spectra obtained in both studies demonstrates a good agreement of the primary data. We conclude that in TPE spectra of LHCII and PSI, the contribution of Chls is dominating above 600/1200 nm, whereas the contributions of forbidden Car states increase particularly at wavelengths shorter than 600/1200 nm. Estimates of Car contributions to TPA as well as TPE spectra are given for various wavelengths.


Asunto(s)
Carotenoides/química , Clorofila/química , Complejos de Proteína Captadores de Luz/química , Fotones , Análisis Espectral/métodos
10.
J Phys Chem Lett ; 12(12): 3176-3181, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33755477

RESUMEN

Femtosecond transient absorption spectroscopy following two-photon excitation (2PE) is used to determine the contributions of carotenoids and chlorophylls to the 2PE signals in the main plant light-harvesting complex (LHCII). For 2PE, excitation at 1210 and 1300 nm was used, being within the known 2PE profile of LHCII. At both excitation wavelengths, the transient absorption spectra exhibit a shape characteristic of excited chlorophylls with only a minor contribution from carotenoids. We compare the 2PE data measured for LHCII with those obtained from 2PE of a lutein/chlorophyll a mixture in acetone. We estimate that although the 2PE cross section of a single carotenoid in acetone is ∼1.7 times larger than that of a Chl a, due to the 1:3.5 carotenoid/Chl ratio in LHCII, only one-third of the absorbed 2PE photons excite carotenoids in LHCII in the 1200-1300 nm range.

11.
J Phys Chem Lett ; 11(21): 9387-9392, 2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-33095593

RESUMEN

One-helix proteins 1 and 2 (OHP1/2) are members of the family of light-harvesting-like proteins (LIL) in plants, and their potential function(s) have been initially analyzed only recently. OHP1 and OHP2 are structurally related to the transmembrane α-helices 1 and 3 of all members of the light-harvesting complex (LHC) superfamily. Arabidopsis thaliana OHPs form heterodimers which bind 6 chlorophylls (Chls) a and two carotenoids in vitro. Their function remains unclear, and therefore, a spectroscopic study with reconstituted OHP1/OHP2-complexes was performed. Steady-state spectroscopy did not indicate singlet excitation energy transfer between pigments. Thus, a light-harvesting function can be excluded. Possible pigment-storage and/or -delivery functions of OHPs require photoprotection of the bound Chls. Hence, Chl and carotenoid triplet formation and decays in reconstituted OHP1/2 dimers were measured using nanosecond transient absorption spectroscopy. Unlike in all other photosynthetic LHCs, unquenched Chl triplets were observed with unusually long lifetimes. Moreover, there were virtually no differences in both Chl and carotenoid triplet state lifetimes under either aerobic or anaerobic conditions. The results indicate that both Chls and carotenoids are shielded by the proteins from interactions with ambient oxygen and, thus, protected against formation of singlet oxygen. Only a minor portion of the Chl triplets was quenched by carotenoids. These results are in stark contrast to all previously observed photoprotective processes in LHC/LIL proteins and, thus, may constitute a novel mechanism of photoprotection in the plant photosynthetic apparatus.


Asunto(s)
Proteínas de Arabidopsis/química , Arabidopsis/química , Carotenoides/química , Proteínas de Unión a Clorofila/química , Clorofila/química , Complejos de Proteína Captadores de Luz/química , Transferencia de Energía , Cinética , Oxígeno/química , Procesos Fotoquímicos , Fotosíntesis , Conformación Proteica , Multimerización de Proteína
12.
Int J Mol Sci ; 21(7)2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32244795

RESUMEN

The effects of combining naturally evolved photosynthetic pigment-protein complexes with inorganic functional materials, especially plasmonically active metallic nanostructures, have been a widely studied topic in the last few decades. Besides other applications, it seems to be reasonable using such hybrid systems for designing future biomimetic solar cells. In this paper, we describe selected results that point out to various aspects of the interactions between photosynthetic complexes and plasmonic excitations in Silver Island Films (SIFs). In addition to simple light-harvesting complexes, like peridinin-chlorophyll-protein (PCP) or the Fenna-Matthews-Olson (FMO) complex, we also discuss the properties of large, photosynthetic reaction centers (RCs) and Photosystem I (PSI)-both prokaryotic PSI core complexes and eukaryotic PSI supercomplexes with attached antenna clusters (PSI-LHCI)-deposited on SIF substrates.


Asunto(s)
Carotenoides/metabolismo , Clorofila A/metabolismo , Complejos de Proteína Captadores de Luz/metabolismo , Fotosíntesis , Complejo de Proteína del Fotosistema I/metabolismo , Plata/química , Formaldehído/química , Glucosa/química , Nanoestructuras/química , Nanoestructuras/ultraestructura , Espectrometría de Fluorescencia/métodos
14.
Faraday Discuss ; 216(0): 494-506, 2019 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-31037282

RESUMEN

In addition to (bacterio)chlorophylls, (B)Chls, light-harvesting complexes (LHCs) bind carotenoids, and/or their oxygen derivatives, xanthophylls. Xanthophylls/carotenoids have pivotal functions in LHCs: in stabilization of the structure, as accessory light-harvesting pigments and, probably most importantly, in photoprotection. Xanthophylls are assumed to be involved in the not yet fully understood mechanism of energy-dependent (qE) non-photochemical quenching of Chl fluorescence (NPQ) in higher plants and algae. The so called "xanthophyll cycle" appears to be crucial in this regard. The molecular mechanism(s) of xanthophyll involvement in qE/NPQ have not been established, yet. Moreover, excitation energy transfer (EET) processes involving carotenoids are also difficult to study, due to the fact that transitions between the ground state (S0, 11Ag-) and the lowest excited singlet state (S1, 21Ag-) of carotenoids are optically one-photon forbidden ("dark"). Two-photon excitation spectroscopic techniques have been used for more than two decades to study one-photon forbidden states of carotenoids. In the current study, two-photon excitation profiles of LHCII samples containing different xanthophyll complements were measured in the presumed 11Ag- → 21Ag- (S0 → S1) transition spectral region of the xanthophylls, as well as for isolated chlorophylls a and b in solution. The results indicate that direct two-photon excitation of Chls in this spectral region is dominant over that by xanthophylls. Implications of the results for proposed mechanism(s) of qE/NPQ will be discussed.


Asunto(s)
Complejos de Proteína Captadores de Luz/metabolismo , Fotones , Pigmentos Biológicos/metabolismo , Complejos de Proteína Captadores de Luz/química , Pigmentos Biológicos/química , Espectrometría de Fluorescencia
15.
Photosynth Res ; 140(2): 207-213, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30411209

RESUMEN

A comparative two-photon excitation spectroscopic study of the exciton structure of the core antenna complex (LH1) and its subunit B820 was carried out. LH1 and its subunit B820 were isolated from cells of the carotenoid-less mutant G9 of Rhodospirillum rubrum. The measurements were performed by two-photon pump-probe spectroscopy. Samples were excited by 70 fs pulses at 1390 nm at a frequency of 1 kHz. Photoinduced absorption changes were recorded in the spectral range from 780 to 1020 nm for time delays of the probe pulse relative to the pump pulse in the - 1.5 to 11 ps range. All measurements were performed at room temperature. Two-photon excitation caused bleaching of exciton bands (k = 0, k = ± 1) of the circular bacteriochlorophyll aggregate of LH1. In the case of the B820 subunit, two-photon excitation did not cause absorption changes in this spectral range. It is proposed that in LH1 upper exciton branch states are mixed with charge-transfer (CT) states. In B820 such mixing is absent, precluding two-photon excitation in this spectral region. Usually, CT states are optically "dark", i.e., one photon-excitation forbidden. Thus, their investigation is rather complicated by conventional spectroscopic methods. Thus, our study provides a novel approach to investigate CT states and their interaction(s) with other excited states in photosynthetic light-harvesting complexes and other molecular aggregates.


Asunto(s)
Complejos de Proteína Captadores de Luz/metabolismo , Fotosíntesis , Rhodospirillum rubrum/fisiología , Bacterioclorofilas/metabolismo , Carotenoides/metabolismo , Fotones , Análisis Espectral
16.
J Phys Chem Lett ; 9(22): 6669-6675, 2018 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-30400743

RESUMEN

A peculiarity of cyanobacterial Photosystem I (PSI) is the presence of so-called red chlorophylls absorbing at wavelengths longer than the reaction center P700. The origin and function of these chlorophylls have been debated in literature, but so far no consensus has been reached on either question. Here, we use plasmon-enhanced single-particle fluorescence spectroscopy to elucidate the origin of both short- and long-wavelength emitting species in monomeric PSI from Thermosynechococcus elongatus at room temperature. Polarized fluorescence spectra of single PSI complexes reveal a phase shift in the modulation of the short-wavelength (687 nm) and long-wavelength (717 nm) peaks. Numerical simulations show that this phase shift reflects a spatial angle of 15° between the transition dipole moments of the two forms. Quantum chemical calculations, together with reported X-ray structural and spectroscopic data, were used to assign the chlorophyll a monomer A3 as a candidate for the short-wavelength emitter and the B31-B32 chlorophyll dimer as a candidate for the long-wavelength emitter.


Asunto(s)
Bacterioclorofilas/química , Complejo de Proteína del Fotosistema I/química , Cianobacterias/enzimología , Fluorescencia , Modelos Químicos , Teoría Cuántica , Espectrometría de Fluorescencia/métodos , Temperatura
17.
J Phys Chem B ; 122(38): 8834-8845, 2018 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-30179014

RESUMEN

Chlorophyll (Chl) triplet states generated in photosynthetic light-harvesting complexes (LHCs) can be quenched by carotenoids to prevent the formation of reactive singlet oxygen. Although this quenching occurs with an efficiency close to 100% at physiological temperatures, the Chl triplets are often observed at low temperatures. This might be due to the intrinsic temperature dependence of the Dexter mechanism of excitation energy transfer, which governs triplet quenching, or by temperature-induced conformational changes. Here, we report about the temperature dependence of Chl triplet quenching in two LHCs. We show that both the effects contribute significantly. In LHC II of higher plants, the core Chls are quenched with a high efficiency independent of temperature. A different subpopulation of Chls, which increases with lowering temperature, is not quenched at all. This is probably caused by the conformational changes which detach these Chls from the energy-transfer chain. In a membrane-intrinsic LHC of dinoflagellates, similarly two subpopulations of Chls were observed. In addition, another part of Chl triplets is quenched by carotenoids with a rate which decreases with temperature. This allowed us to study the temperature dependence of Dexter energy transfer. Finally, a part of Chls was quenched by triplet-triplet annihilation, a phenomenon which was not observed for LHCs before.


Asunto(s)
Clorofila A/química , Complejos de Proteína Captadores de Luz/química , Carotenoides/química , Carotenoides/efectos de la radiación , Clorofila/química , Clorofila/efectos de la radiación , Clorofila A/efectos de la radiación , Frío , Dinoflagelados/química , Transferencia de Energía , Luz , Complejos de Proteína Captadores de Luz/efectos de la radiación , Spinacia oleracea/química
18.
J Biol Chem ; 293(23): 9090-9100, 2018 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-29695502

RESUMEN

The binding of photosystem I (PS I) from Thermosynechococcus elongatus to the native cytochrome (cyt) c6 and cyt c from horse heart (cyt cHH) was analyzed by oxygen consumption measurements, isothermal titration calorimetry (ITC), and rigid body docking combined with electrostatic computations of binding energies. Although PS I has a higher affinity for cyt cHH than for cyt c6, the influence of ionic strength and pH on binding is different in the two cases. ITC and theoretical computations revealed the existence of unspecific binding sites for cyt cHH besides one specific binding site close to P700 Binding to PS I was found to be the same for reduced and oxidized cyt cHH Based on this information, suitable conditions for cocrystallization of cyt cHH with PS I were found, resulting in crystals with a PS I:cyt cHH ratio of 1:1. A crystal structure at 3.4-Å resolution was obtained, but cyt cHH cannot be identified in the electron density map because of unspecific binding sites and/or high flexibility at the specific binding site. Modeling the binding of cyt c6 to PS I revealed a specific binding site where the distance and orientation of cyt c6 relative to P700 are comparable with cyt c2 from purple bacteria relative to P870 This work provides new insights into the binding modes of different cytochromes to PS I, thus facilitating steps toward solving the PS I-cyt c costructure and a more detailed understanding of natural electron transport processes.


Asunto(s)
Proteínas Bacterianas/metabolismo , Cianobacterias/metabolismo , Citocromos c6/metabolismo , Citocromos c/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Animales , Proteínas Bacterianas/química , Sitios de Unión , Cianobacterias/química , Citocromos c/química , Citocromos c6/química , Caballos , Simulación del Acoplamiento Molecular , Concentración Osmolar , Complejo de Proteína del Fotosistema I/química , Electricidad Estática
19.
J Phys Chem B ; 122(6): 1846-1851, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29350531

RESUMEN

Using near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, the carbon backbone of sodium copper chlorophyllin (SCC), a widely used chlorophyll derivative, and its breakdown products are analyzed to elucidate their electronic structure and physicochemical properties. Using various sample preparation methods and complementary spectroscopic methods (including UV/Vis, X-ray photoelectron spectroscopy), a comprehensive insight into the SCC breakdown process is presented. The experimental results are supported by density functional theory calculations, allowing a detailed assignment of characteristic NEXAFS features to specific C bonds. SCC can be seen as a model system for the large group of porphyrins; thus, this work provides a novel and detailed description of the electronic structure of the carbon backbone of those molecules and their breakdown products. The achieved results also promise prospective optical pump/X-ray probe investigations of dynamic processes in chlorophyll-containing photosynthetic complexes to be analyzed more precisely.


Asunto(s)
Clorofila/química , Cobre/química , Espectroscopía de Absorción de Rayos X , Electrones , Estructura Molecular , Teoría Cuántica
20.
Photosynth Res ; 135(1-3): 329-336, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29090426

RESUMEN

A polyhistidine tag (His-tag) present on Chlorobaculum tepidum reaction centers (RCs) was used to immobilize photosynthetic complexes on a silver nanowire (AgNW) modified with nickel-chelating nitrilo-triacetic acid (Ni-NTA). The optical properties of conjugated nanostructures were studied using wide-field and confocal fluorescence microscopy. Plasmonic enhancement of RCs conjugated to AgNWs was observed as their fluorescence intensity dependence on the excitation wavelength does not follow the excitation spectrum of RC complexes in solution. The strongest effect of plasmonic interactions on the emission intensity of RCs coincides with the absorption spectrum of AgNWs and is observed for excitation into the carotenoid absorption. From the absence of fluorescence decay shortening, we attribute the emission enhancement to increase of absorption in RC complexes.


Asunto(s)
Quelantes/química , Chlorobi/metabolismo , Nanocables/química , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Plata/química , Soluciones , Espectrometría de Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...