Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 2444: 271-282, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35290643

RESUMEN

Ubiquitylation is a posttranslational modification that utilizes protein-protein binding interactions to regulate cellular processes. In ubiquitin signaling, a vast array of mono- and polyubiquitin modifications to substrate proteins are recognized by a diverse group of ubiquitin-binding proteins. Identifying ubiquitin-binding proteins and characterizing their binding properties is necessary for understanding the structural basis of ubiquitin signaling. This chapter provides a means of studying ubiquitin-binding interactions in vitro by describing how to generate monoubiquitin and K63-linked polyubiquitin chains and perform pull-down assays with ubiquitin-binding proteins, which is of particular relevance for DNA damage and other signaling pathways.


Asunto(s)
Poliubiquitina , Ubiquitina , Poliubiquitina/metabolismo , Unión Proteica , Procesamiento Proteico-Postraduccional , Ubiquitina/metabolismo , Ubiquitinación
2.
J Biol Chem ; 298(2): 101545, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34971705

RESUMEN

Alkylation of DNA and RNA is a potentially toxic lesion that can result in mutations and even cell death. In response to alkylation damage, K63-linked polyubiquitin chains are assembled that localize the Alpha-ketoglutarate-dependent dioxygenase alkB homolog 3-Activating Signal Cointegrator 1 Complex Subunit (ASCC) repair complex to damage sites in the nucleus. The protein ASCC2, a subunit of the ASCC complex, selectively binds K63-linked polyubiquitin chains via its coupling of ubiquitin conjugation to ER degradation (CUE) domain. The basis for polyubiquitin-binding specificity was unclear, because CUE domains in other proteins typically bind a single ubiquitin and do not discriminate among different polyubiquitin linkage types. We report here that the ASCC2 CUE domain selectively binds K63-linked diubiquitin by contacting both the distal and proximal ubiquitin. The ASCC2 CUE domain binds the distal ubiquitin in a manner similar to that reported for other CUE domains bound to a single ubiquitin, whereas the contacts with the proximal ubiquitin are unique to ASCC2. Residues in the N-terminal portion of the ASCC2 α1 helix contribute to the binding interaction with the proximal ubiquitin of K63-linked diubiquitin. Mutation of residues within the N-terminal portion of the ASCC2 α1 helix decreases ASCC2 recruitment in response to DNA alkylation, supporting the functional significance of these interactions during the alkylation damage response. Our study reveals the versatility of CUE domains in ubiquitin recognition.


Asunto(s)
Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 3 de AlkB , Reparación del ADN , Proteínas Nucleares , Poliubiquitina , Ubiquitina , Ubiquitinas , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 3 de AlkB/genética , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 3 de AlkB/metabolismo , ADN/metabolismo , Modelos Moleculares , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Poliubiquitina/genética , Poliubiquitina/metabolismo , Unión Proteica , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitinas/genética , Ubiquitinas/metabolismo
3.
Nature ; 551(7680): 389-393, 2017 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-29144457

RESUMEN

DNA repair is essential to prevent the cytotoxic or mutagenic effects of various types of DNA lesions, which are sensed by distinct pathways to recruit repair factors specific to the damage type. Although biochemical mechanisms for repairing several forms of genomic insults are well understood, the upstream signalling pathways that trigger repair are established for only certain types of damage, such as double-stranded breaks and interstrand crosslinks. Understanding the upstream signalling events that mediate recognition and repair of DNA alkylation damage is particularly important, since alkylation chemotherapy is one of the most widely used systemic modalities for cancer treatment and because environmental chemicals may trigger DNA alkylation. Here we demonstrate that human cells have a previously unrecognized signalling mechanism for sensing damage induced by alkylation. We find that the alkylation repair complex ASCC (activating signal cointegrator complex) relocalizes to distinct nuclear foci specifically upon exposure of cells to alkylating agents. These foci associate with alkylated nucleotides, and coincide spatially with elongating RNA polymerase II and splicing components. Proper recruitment of the repair complex requires recognition of K63-linked polyubiquitin by the CUE (coupling of ubiquitin conjugation to ER degradation) domain of the subunit ASCC2. Loss of this subunit impedes alkylation adduct repair kinetics and increases sensitivity to alkylating agents, but not other forms of DNA damage. We identify RING finger protein 113A (RNF113A) as the E3 ligase responsible for upstream ubiquitin signalling in the ASCC pathway. Cells from patients with X-linked trichothiodystrophy, which harbour a mutation in RNF113A, are defective in ASCC foci formation and are hypersensitive to alkylating agents. Together, our work reveals a previously unrecognized ubiquitin-dependent pathway induced specifically to repair alkylation damage, shedding light on the molecular mechanism of X-linked trichothiodystrophy.


Asunto(s)
Enzimas AlkB/metabolismo , Aductos de ADN/metabolismo , Reparación del ADN , Complejos Multiproteicos/metabolismo , Transducción de Señal , Síndromes de Tricotiodistrofia/genética , Ubiquitina/metabolismo , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 3 de AlkB/metabolismo , Alquilantes/farmacología , Alquilación , Secuencia de Aminoácidos , Aductos de ADN/química , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Retículo Endoplásmico/metabolismo , Genes Ligados a X , Humanos , Cinética , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Poliubiquitina/metabolismo , ARN Polimerasa II/metabolismo , Empalme del ARN , Síndromes de Tricotiodistrofia/metabolismo , Síndromes de Tricotiodistrofia/patología , Ubiquitinación
4.
J Mol Med (Berl) ; 95(8): 799-807, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28681078

RESUMEN

A decade has passed since the first reported connection between RAP80 and BRCA1 in DNA double-strand break repair. Despite the initial identification of RAP80 as a factor localizing BRCA1 to DNA double-strand breaks and potentially promoting homologous recombination, there is increasing evidence that RAP80 instead suppresses homologous recombination to fine-tune the balance of competing DNA repair processes during the S/G2 phase of the cell cycle. RAP80 opposes homologous recombination by inhibiting DNA end-resection and sequestering BRCA1 into the BRCA1-A complex. Ubiquitin and SUMO modifications of chromatin at DNA double-strand breaks recruit RAP80, which contains distinct sequence motifs that recognize ubiquitin and SUMO. Here, we review RAP80's role in repressing homologous recombination at DNA double-strand breaks and how this role is facilitated by its ability to bind ubiquitin and SUMO modifications.


Asunto(s)
Proteínas Portadoras/genética , Daño del ADN , Proteínas Nucleares/genética , Proteína SUMO-1/genética , Ubiquitina/genética , Animales , Proteína BRCA1/química , Proteína BRCA1/genética , Proteínas Portadoras/química , Proteínas de Unión al ADN , Chaperonas de Histonas , Recombinación Homóloga , Humanos , Proteínas Nucleares/química , Estructura Secundaria de Proteína , Proteína SUMO-1/química , Ubiquitina/química
5.
Biochemistry ; 54(48): 7142-55, 2015 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-26598179

RESUMEN

Geosmin synthase from Streptomyces coelicolor (ScGS) catalyzes an unusual, metal-dependent terpenoid cyclization and fragmentation reaction sequence. Two distinct active sites are required for catalysis: the N-terminal domain catalyzes the ionization and cyclization of farnesyl diphosphate to form germacradienol and inorganic pyrophosphate (PPi), and the C-terminal domain catalyzes the protonation, cyclization, and fragmentation of germacradienol to form geosmin and acetone through a retro-Prins reaction. A unique αα domain architecture is predicted for ScGS based on amino acid sequence: each domain contains the metal-binding motifs typical of a class I terpenoid cyclase, and each domain requires Mg(2+) for catalysis. Here, we report the X-ray crystal structure of the unliganded N-terminal domain of ScGS and the structure of its complex with three Mg(2+) ions and alendronate. These structures highlight conformational changes required for active site closure and catalysis. Although neither full-length ScGS nor constructs of the C-terminal domain could be crystallized, homology models of the C-terminal domain were constructed on the basis of ∼36% sequence identity with the N-terminal domain. Small-angle X-ray scattering experiments yield low-resolution molecular envelopes into which the N-terminal domain crystal structure and the C-terminal domain homology model were fit, suggesting possible αα domain architectures as frameworks for bifunctional catalysis.


Asunto(s)
Alendronato/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Naftoles/metabolismo , Sesquiterpenos/metabolismo , Streptomyces coelicolor/enzimología , Cristalografía por Rayos X , Ciclización , Magnesio/metabolismo , Modelos Moleculares , Fosfatos de Poliisoprenilo/metabolismo , Estructura Terciaria de Proteína , Streptomyces coelicolor/química , Streptomyces coelicolor/metabolismo
6.
Nat Struct Mol Biol ; 20(9): 1033-9, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23955022

RESUMEN

OTUB1 is a Lys48-specific deubiquitinating enzyme that forms a complex in vivo with E2 ubiquitin (Ub)-conjugating enzymes including UBC13 and UBCH5. OTUB1 binds E2~Ub thioester intermediates and prevents ubiquitin transfer, thereby noncatalytically inhibiting accumulation of polyubiquitin. We report here that a second role of OTUB1-E2 interactions is to stimulate OTUB1 cleavage of Lys48 polyubiquitin. This stimulation is regulated by the ratio of charged to uncharged E2 and by the concentration of Lys48-linked polyubiquitin and free ubiquitin. Structural and biochemical studies of human and worm OTUB1 and UBCH5B show that the E2 enzyme stimulates binding of the Lys48 polyubiquitin substrate by stabilizing folding of the OTUB1 N-terminal ubiquitin-binding helix. Our results suggest that OTUB1-E2 complexes in the cell are poised to regulate polyubiquitin chain elongation or degradation in response to changing levels of E2 charging and available free ubiquitin.


Asunto(s)
Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/metabolismo , Enzimas Ubiquitina-Conjugadoras/química , Enzimas Ubiquitina-Conjugadoras/metabolismo , Línea Celular , Cristalografía por Rayos X , Cisteína Endopeptidasas/genética , Enzimas Desubicuitinizantes , Estabilidad de Enzimas , Células HeLa , Humanos , Modelos Moleculares , Complejos Multienzimáticos/química , Complejos Multienzimáticos/metabolismo , Mutagénesis Sitio-Dirigida , Poliubiquitina/metabolismo , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética
7.
Nature ; 489(7415): 313-7, 2012 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-22885700

RESUMEN

Cornelia de Lange syndrome (CdLS) is a dominantly inherited congenital malformation disorder, caused by mutations in the cohesin-loading protein NIPBL for nearly 60% of individuals with classical CdLS, and by mutations in the core cohesin components SMC1A (~5%) and SMC3 (<1%) for a smaller fraction of probands. In humans, the multisubunit complex cohesin is made up of SMC1, SMC3, RAD21 and a STAG protein. These form a ring structure that is proposed to encircle sister chromatids to mediate sister chromatid cohesion and also has key roles in gene regulation. SMC3 is acetylated during S-phase to establish cohesiveness of chromatin-loaded cohesin, and in yeast, the class I histone deacetylase Hos1 deacetylates SMC3 during anaphase. Here we identify HDAC8 as the vertebrate SMC3 deacetylase, as well as loss-of-function HDAC8 mutations in six CdLS probands. Loss of HDAC8 activity results in increased SMC3 acetylation and inefficient dissolution of the 'used' cohesin complex released from chromatin in both prophase and anaphase. SMC3 with retained acetylation is loaded onto chromatin, and chromatin immunoprecipitation sequencing analysis demonstrates decreased occupancy of cohesin localization sites that results in a consistent pattern of altered transcription seen in CdLS cell lines with either NIPBL or HDAC8 mutations.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Síndrome de Cornelia de Lange/genética , Síndrome de Cornelia de Lange/metabolismo , Histona Desacetilasas/genética , Mutación/genética , Proteínas Represoras/genética , Acetilación , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Anafase , Sitios de Unión , Proteínas de Ciclo Celular/química , Proteoglicanos Tipo Condroitín Sulfato/química , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Cromatina/genética , Cromatina/metabolismo , Inmunoprecipitación de Cromatina , Proteínas Cromosómicas no Histona/química , Cristalografía por Rayos X , Proteínas de Unión al ADN , Femenino , Fibroblastos , Células HeLa , Histona Desacetilasas/química , Histona Desacetilasas/deficiencia , Histona Desacetilasas/metabolismo , Humanos , Masculino , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Profase , Conformación Proteica , Proteínas/genética , Proteínas Represoras/química , Proteínas Represoras/deficiencia , Proteínas Represoras/metabolismo , Transcripción Genética , Cohesinas
8.
Bioorg Med Chem Lett ; 21(19): 5854-8, 2011 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-21875805

RESUMEN

As part of our continuing search for new amino acid inhibitors of metalloenzymes, we now report the synthesis and biological evaluation of the trifluoromethylketone analogue of L-arginine, (S)-2-amino-8,8,8-trifluoro-7-oxo-octanoic acid (10). While this novel amino acid was initially designed as a potential inhibitor of human arginase I, it exhibits no measurable inhibitory activity against this enzyme. Surprisingly, however, 10 is a potent inhibitor of human histone deacetylase 8, with IC(50)=1.5 ± 0.2 µM. Additionally, 10 weakly inhibits the related bacterial enzyme, acetylpolyamine amidohydrolase, with IC(50)=110 ± 30 µM. The lack of inhibitory activity against human arginase I may result from unfavorable interactions of the bulky trifluoromethyl group of 10 in the constricted active site. Since the active site of histone deacetylase 8 is less constricted, we hypothesize that it accommodates 10 as the gem-diol, which mimics the tetrahedral intermediate and its flanking transition states in catalysis. Therefore, we suggest that 10 represents a new lead in the design of an amino acid or peptide-based inhibitor of histone deacetylases with simpler structure than previously studied trifluoromethylketones.


Asunto(s)
Aminoácidos/síntesis química , Aminoácidos/farmacología , Arginasa/antagonistas & inhibidores , Diseño de Fármacos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Proteínas Represoras/antagonistas & inhibidores , Secuencia de Aminoácidos , Aminoácidos/química , Aminoácidos/toxicidad , Dominio Catalítico , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/toxicidad , Histona Desacetilasas , Humanos , Concentración 50 Inhibidora , Isoenzimas/metabolismo , Cetonas/química , Metales/química , Estructura Molecular , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Neoplasias/prevención & control , Proteínas Recombinantes , Relación Estructura-Actividad
9.
Curr Opin Struct Biol ; 21(6): 735-43, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21872466

RESUMEN

Metal-dependent histone deacetylases (HDACs) catalyze the hydrolysis of acetyl-L-lysine side chains in histone and nonhistone proteins to yield l-lysine and acetate. This chemistry plays a critical role in the regulation of numerous biological processes. Aberrant HDAC activity is implicated in various diseases, and HDACs are validated targets for drug design. Two HDAC inhibitors are currently approved for cancer chemotherapy, and other inhibitors are in clinical trials. To date, X-ray crystal structures are available for four human HDACs (2, 4, 7, and 8) and three HDAC-related deacetylases from bacteria (histone deacetylase-like protein (HDLP); histone deacetylase-like amidohydrolase (HDAH); acetylpolyamine amidohydrolase (APAH)). Structural comparisons among these enzymes reveal a conserved constellation of active site residues, suggesting a common mechanism for the metal-dependent hydrolysis of acetylated substrates. Structural analyses of HDACs and HDAC-related deacetylases guide the design of tight-binding inhibitors, and future prospects for developing isozyme-specific inhibitors are quite promising.


Asunto(s)
Inhibidores de Histona Desacetilasas/química , Histona Desacetilasas/química , Metaloproteínas/química , Acetilación , Animales , Dominio Catalítico , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Inhibidores de Histona Desacetilasas/metabolismo , Histona Desacetilasas/metabolismo , Humanos , Lisina/genética , Lisina/metabolismo , Metaloproteínas/metabolismo , Conformación Proteica
10.
Biochemistry ; 50(11): 1808-17, 2011 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-21268586

RESUMEN

Polyamines are a ubiquitous class of polycationic small molecules that can influence gene expression by binding to nucleic acids. Reversible polyamine acetylation regulates nucleic acid binding and is required for normal cell cycle progression and proliferation. Here, we report the structures of Mycoplana ramosa acetylpolyamine amidohydrolase (APAH) complexed with a transition state analogue and a hydroxamate inhibitor and an inactive mutant complexed with two acetylpolyamine substrates. The structure of APAH is the first of a histone deacetylase-like oligomer and reveals that an 18-residue insert in the L2 loop promotes dimerization and the formation of an 18 Å long "L"-shaped active site tunnel at the dimer interface, accessible only to narrow and flexible substrates. The importance of dimerization for polyamine deacetylase function leads to the suggestion that a comparable dimeric or double-domain histone deacetylase could catalyze polyamine deacetylation reactions in eukaryotes.


Asunto(s)
Aminohidrolasas/química , Bacterias/enzimología , Histona Desacetilasas/química , Poliaminas/metabolismo , Aminohidrolasas/metabolismo , Bacterias/metabolismo , Catálisis , Dimerización , Eucariontes , Evolución Molecular , Histona Desacetilasas/metabolismo , Ligandos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...