Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Aging Neurosci ; 16: 1328543, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38560025

RESUMEN

Introduction: The hippocampus is especially susceptible to age-associated neuronal pathologies, and there is concern that the age-associated rise in cortisol secretion from the adrenal gland may contribute to their etiology. Furthermore, because 11ß-hydroxysteroid dehydrogenase type 1 (HSD11B1) catalyzes the reduction of cortisone to the active hormone cortisol, it is plausible that an increase in the expression of this enzyme enhances the deleterious impact of cortisol in the hippocampus and contributes to the neuronal pathologies that underlie cognitive decline in the elderly. Methods: Rhesus macaques were used as a translational animal model of human aging, to examine age-related changes in gene and protein expressions of (HSD11B1/HSD11B1) in the hippocampus, a region of the brain that plays a crucial role in learning and memory. Results: Older animals showed significantly (p < 0.01) higher base-line cortisol levels in the circulation. In addition, they showed significantly (p < 0.05) higher hippocampal expression of HSD11B1 but not NR3C1 and NR3C2 (i.e., two receptor-encoding genes through which cortisol exerts its physiological actions). A similar age-related significant (p < 0.05) increase in the expression of the HSD11B1 was revealed at the protein level by western blot analysis. Discussion: The data suggest that an age-related increase in the expression of hippocampal HSD11B1 is likely to raise cortisol concentrations in this cognitive brain area, and thereby contribute to the etiology of neuropathologies that ultimately lead to neuronal loss and dementia. Targeting this enzyme pharmacologically may help to reduce the negative impact of elevated cortisol concentrations within glucocorticoid-sensitive brain areas and thereby afford neuronal protection.

2.
J Alzheimers Dis Rep ; 8(1): 25-32, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38229831

RESUMEN

Rhesus macaques develop amyloid-ß (Aß) plaques during old age, but it is unclear how extensively they express other pathological hallmarks of dementia. Here we used immunohistochemistry to examine expression of phosphorylated tau (pTau) protein and cytoplasmic inclusions of TAR DNA binding protein 43 kDa (TDP-43) within the amygdala of young and old males, and also in old surgically-menopausal females that were maintained on regular or obesogenic diets. Only one animal, a 23-year-old female, showed pTau expression and none showed TDP-43 inclusions. What genetic and/or environmental factors protect macaques from expressing more severe human neuro-pathologies remains an interesting unresolved question.

3.
Clin Epigenetics ; 15(1): 191, 2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-38093359

RESUMEN

BACKGROUND: In 1990, David Barker proposed that prenatal nutrition is directly linked to adult cardiovascular disease. Since then, the relationship between adult cardiovascular risk, metabolic syndrome and birth weight has been widely documented. Here, we used the TruSeq Methyl Capture EPIC platform to compare the methylation patterns in cord blood from large for gestational age (LGA) vs adequate for gestational age (AGA) newborns from the LARGAN cohort. RESULTS: We found 1672 differentially methylated CpGs (DMCs) with a nominal p < 0.05 and 48 differentially methylated regions (DMRs) with a corrected p < 0.05 between the LGA and AGA groups. A systems biology approach identified several biological processes significantly enriched with genes in association with DMCs with FDR < 0.05, including regulation of transcription, regulation of epinephrine secretion, norepinephrine biosynthesis, receptor transactivation, forebrain regionalization and several terms related to kidney and cardiovascular development. Gene ontology analysis of the genes in association with the 48 DMRs identified several significantly enriched biological processes related to kidney development, including mesonephric duct development and nephron tubule development. Furthermore, our dataset identified several DNA methylation markers enriched in gene networks involved in biological pathways and rare diseases of the cardiovascular system, kidneys, and metabolism. CONCLUSIONS: Our study identified several DMCs/DMRs in association with fetal overgrowth. The use of cord blood as a material for the identification of DNA methylation biomarkers gives us the possibility to perform follow-up studies on the same patients as they grow. These studies will not only help us understand how the methylome responds to continuum postnatal growth but also link early alterations of the DNA methylome with later clinical markers of growth and metabolic fitness.


Asunto(s)
Metilación de ADN , Diabetes Gestacional , Embarazo , Adulto , Femenino , Humanos , Recién Nacido , Edad Gestacional , Diabetes Gestacional/genética , Macrosomía Fetal/genética
4.
Lancet Diabetes Endocrinol ; 11(3): 203-216, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36620967

RESUMEN

Puberty is a major maturational event; its mechanisms and timing are driven by genetic determinants, but also controlled by endogenous and environmental cues. Substantial progress towards elucidation of the neuroendocrine networks governing puberty has taken place. However, key aspects of the mechanisms responsible for the precise timing of puberty and its alterations have only recently begun to be deciphered, propelled by epidemiological data suggesting that pubertal timing is changing in humans, via mechanisms that are not yet understood. By integrating basic and clinical data, we provide a comprehensive overview of current advances on the physiological basis of puberty, with a particular focus on the roles of kisspeptins and other central transmitters, the underlying molecular and endocrine mechanisms, and the pathways involved in pubertal modulation by nutritional and metabolic cues. Additionally, we have summarised molecular features of precocious and delayed puberty in both sexes, as revealed by clinical and genetic studies. This Review is a synoptic up-to-date view of how puberty is controlled and of the pathogenesis of major pubertal alterations, from both a clinical and translational perspective. We also highlight unsolved challenges that will seemingly concentrate future research efforts in this active domain of endocrinology.


Asunto(s)
Pubertad Precoz , Pubertad , Masculino , Femenino , Humanos , Kisspeptinas/genética , Kisspeptinas/metabolismo , Pubertad Precoz/genética
5.
Addict Biol ; 27(1): e13107, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34699111

RESUMEN

Hazardous, heavy drinking increases risk for developing alcohol use disorder (AUD), which affects ~7% of adult Americans. Thus, understanding the molecular mechanisms promoting risk for heavy drinking is essential to developing more effective AUD pharmacotherapies than those currently approved by the FDA. Using genome-wide bisulfate sequencing, we identified DNA methylation (DNAm) signals within the nucleus accumbens core (NAcC) that differentiate nonheavy and heavy ethanol-drinking rhesus macaques. One differentially DNAm region (D-DMR) located within the gene neurobeachin (NBEA), which promotes synaptic membrane protein trafficking, was hypermethylated in heavy drinking macaques. A parallel study identified a similar NBEA D-DMR in human NAcC that distinguished alcoholic and nonalcoholic individuals. To investigate the role of NBEA in heavy ethanol drinking, we engineered a viral vector carrying a short hairpin RNA (shRNA) to reduce the expression of NBEA. Using two murine models of ethanol consumption: 4 days of drinking-in-the-dark and 4 weeks of chronic intermittent access, the knockdown of NBEA expression did not alter average ethanol consumption in either model. However, it did lead to a significant increase in the ethanol preference ratio. Following withdrawal, whole-cell patch clamp electrophysiological experiments revealed that Nbea knockdown led to an increase in spontaneous excitatory postsynaptic current amplitude with no alteration in spontaneous inhibitory postsynaptic currents, suggesting a specific role of NBEA in trafficking of glutamatergic receptors. Together, our findings suggest that NBEA could be targeted to modulate the preference for alcohol use.


Asunto(s)
Consumo de Bebidas Alcohólicas/genética , Alcoholismo/genética , Proteínas Portadoras/genética , Proteínas del Tejido Nervioso/genética , Adulto , Anciano , Animales , Metilación de ADN/efectos de los fármacos , Humanos , Macaca mulatta , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Núcleo Accumbens/efectos de los fármacos
6.
Nature ; 599(7885): 377-379, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34732878
7.
Elife ; 102021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34494548

RESUMEN

Hypothalamic Kiss1 neurons control gonadotropin-releasing hormone release through the secretion of kisspeptin. Kiss1 neurons serve as a nodal center that conveys essential regulatory cues for the attainment and maintenance of reproductive function. Despite this critical role, the mechanisms that control kisspeptin synthesis and release remain largely unknown. Using Drop-Seq data from the arcuate nucleus of adult mice and in situ hybridization, we identified Nescient Helix-Loop-Helix 2 (Nhlh2), a transcription factor of the basic helix-loop-helix family, to be enriched in Kiss1 neurons. JASPAR analysis revealed several binding sites for NHLH2 in the Kiss1 and Tac2 (neurokinin B) 5' regulatory regions. In vitro luciferase assays evidenced a robust stimulatory action of NHLH2 on human KISS1 and TAC3 promoters. The recruitment of NHLH2 to the KISS1 and TAC3 promoters was further confirmed through chromatin immunoprecipitation. In vivo conditional ablation of Nhlh2 from Kiss1 neurons using Kiss1Cre:Nhlh2fl/fl mice induced a male-specific delay in puberty onset, in line with a decrease in arcuate Kiss1 expression. Females retained normal reproductive function albeit with irregular estrous cycles. Further analysis of male Kiss1Cre:Nhlh2fl/fl mice revealed higher susceptibility to metabolic challenges in the release of luteinizing hormone and impaired response to leptin. Overall, in Kiss1 neurons, Nhlh2 contributes to the metabolic regulation of kisspeptin and NKB synthesis and release, with implications for the timing of puberty onset and regulation of fertility in male mice.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Kisspeptinas/metabolismo , Neuronas/fisiología , Maduración Sexual/fisiología , Animales , Línea Celular , Cromatina , ADN/genética , Estradiol/farmacología , Femenino , Fertilidad , Regulación de la Expresión Génica/efectos de los fármacos , Inmunoprecipitación , Kisspeptinas/genética , Kisspeptinas/farmacología , Leptina/farmacología , Hormona Luteinizante/metabolismo , Masculino , Ratones , Ratones Noqueados , Fragmentos de Péptidos/farmacología , Reacción en Cadena de la Polimerasa/métodos , Factores Sexuales , Sustancia P/análogos & derivados , Sustancia P/farmacología
8.
Environ Health Perspect ; 129(8): 87003, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34383603

RESUMEN

BACKGROUND: The effects of endocrine-disrupting chemicals (EDCs) on fertility and reproductive development represent a rising concern in modern societies. Although the neuroendocrine control of sexual maturation is a major target of EDCs, little is known about the potential role of the hypothalamus in puberty and ovulation disruption transmitted across generations. OBJECTIVES: We hypothesized that developmental exposure to an environmentally relevant dose of EDC mixture could induce multi- and/or transgenerational alterations of sexual maturation and maternal care in female rats through epigenetic reprograming of the hypothalamus. We investigated the transmission of a disrupted reproductive phenotype via the maternal germline or via nongenomic mechanisms involving maternal care. METHODS: Adult female Wistar rats were exposed prior to and during gestation and until the end of lactation to a mixture of the following 13 EDCs: di-n-butyl phthalate (DnBP), di(2-ethylhexyl) phthalate (DEHP), bisphenol A (BPA), vinclozolin, prochloraz, procymidone, linuron, epoxynaxole, dichlorodiphenyldichloroethylene, octyl methoxynimmate, 4-methylbenzylidene camphor (4-MBC), butylparaben, and acetaminophen. Perinatally exposed offspring (F1) were mated with unexposed males to generate germ cell (F2) and transgenerationally exposed (F3 and F4) females. Sexual maturation, maternal behavior, and hypothalamic targets of exposure were studied across generations. RESULTS: Germ cell (F2) and transgenerationally (F3) EDC-exposed females, but not F1, displayed delayed pubertal onset and altered folliculogenesis. We reported a transgenerational alteration of key hypothalamic genes controlling puberty and ovulation (Kiss1, Esr1, and Oxt), and we identified the hypothalamic polycomb group of epigenetic repressors as actors of this mechanism. Furthermore, we found a multigenerational reduction of maternal behavior (F1-F3) induced by a loss in hypothalamic dopaminergic signaling. Using a cross-fostering paradigm, we identified that the reduction in maternal phenotype was normalized in EDC-exposed pups raised by unexposed dams, but no reversal of the pubertal phenotype was achieved. DISCUSSION: Rats developmentally exposed to an EDC mixture exhibited multi- and transgenerational disruption of sexual maturation and maternal care via hypothalamic epigenetic reprogramming. These results raise concerns about the impact of EDC mixtures on future generations. https://doi.org/10.1289/EHP8795.


Asunto(s)
Disruptores Endocrinos , Hipotálamo/efectos de los fármacos , Conducta Materna/efectos de los fármacos , Efectos Tardíos de la Exposición Prenatal , Animales , Disruptores Endocrinos/toxicidad , Epigénesis Genética , Femenino , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Ratas , Ratas Wistar , Maduración Sexual
9.
Front Genet ; 12: 613808, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33692826

RESUMEN

The SALL2 transcription factor, an evolutionarily conserved gene through vertebrates, is involved in normal development and neuronal differentiation. In disease, SALL2 is associated with eye, kidney, and brain disorders, but mainly is related to cancer. Some studies support a tumor suppressor role and others an oncogenic role for SALL2, which seems to depend on the cancer type. An additional consideration is tissue-dependent expression of different SALL2 isoforms. Human and mouse SALL2 gene loci contain two promoters, each controlling the expression of a different protein isoform (E1 and E1A). Also, several improvements on the human genome assembly and gene annotation through next-generation sequencing technologies reveal correction and annotation of additional isoforms, obscuring dissection of SALL2 isoform-specific transcriptional targets and functions. We here integrated current data of normal/tumor gene expression databases along with ChIP-seq binding profiles to analyze SALL2 isoforms expression distribution and infer isoform-specific SALL2 targets. We found that the canonical SALL2 E1 isoform is one of the lowest expressed, while the E1A isoform is highly predominant across cell types. To dissect SALL2 isoform-specific targets, we analyzed publicly available ChIP-seq data from Glioblastoma tumor-propagating cells and in-house ChIP-seq datasets performed in SALL2 wild-type and E1A isoform knockout HEK293 cells. Another available ChIP-seq data in HEK293 cells (ENCODE Consortium Phase III) overexpressing a non-canonical SALL2 isoform (short_E1A) was also analyzed. Regardless of cell type, our analysis indicates that the SALL2 long E1 and E1A isoforms, but not short_E1A, are mostly contributing to transcriptional control, and reveals a highly conserved network of brain-specific transcription factors (i.e., SALL3, POU3F2, and NPAS3). Our data integration identified a conserved molecular network in which SALL2 regulates genes associated with neural function, cell differentiation, development, and cell adhesion between others. Also, we identified PODXL as a gene that is likely regulated by SALL2 across tissues. Our study encourages the validation of publicly available ChIP-seq datasets to assess a specific gene/isoform's transcriptional targets. The knowledge of SALL2 isoforms expression and function in different tissue contexts is relevant to understanding its role in disease.

10.
Sci Rep ; 11(1): 1996, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33479437

RESUMEN

Female puberty is subject to Polycomb Group (PcG)-dependent transcriptional repression. Kiss1, a puberty-activating gene, is a key target of this silencing mechanism. Using a gain-of-function approach and a systems biology strategy we now show that EED, an essential PcG component, acts in the arcuate nucleus of the hypothalamus to alter the functional organization of a gene network involved in the stimulatory control of puberty. A central node of this network is Kdm6b, which encodes an enzyme that erases the PcG-dependent histone modification H3K27me3. Kiss1 is a first neighbor in the network; genes encoding glutamatergic receptors and potassium channels are second neighbors. By repressing Kdm6b expression, EED increases H3K27me3 abundance at these gene promoters, reducing gene expression throughout a gene network controlling puberty activation. These results indicate that Kdm6b repression is a basic mechanism used by PcG to modulate the biological output of puberty-activating gene networks.


Asunto(s)
Histona Demetilasas con Dominio de Jumonji/genética , Kisspeptinas/genética , Complejo Represivo Polycomb 2/genética , Pubertad/genética , Animales , Regulación de la Expresión Génica/genética , Redes Reguladoras de Genes/genética , Humanos , Hipotálamo/crecimiento & desarrollo , Hipotálamo/metabolismo , Neuronas/metabolismo , Sistemas Neurosecretores/crecimiento & desarrollo , Sistemas Neurosecretores/metabolismo , Proteínas del Grupo Polycomb/genética , Regiones Promotoras Genéticas/genética , Pubertad/fisiología , Ratas , Biología de Sistemas
11.
Nat Rev Endocrinol ; 17(2): 83-96, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33288917

RESUMEN

The onset of puberty and the female ovulatory cycle are important developmental milestones of the reproductive system. These processes are controlled by a tightly organized network of neurotransmitters and neuropeptides, as well as genetic, epigenetic and hormonal factors, which ultimately drive the pulsatile secretion of gonadotropin-releasing hormone. They also strongly depend on organizational processes that take place during fetal and early postnatal life. Therefore, exposure to environmental pollutants such as endocrine-disrupting chemicals (EDCs) during critical periods of development can result in altered brain development, delayed or advanced puberty and long-term reproductive consequences, such as impaired fertility. The gonads and peripheral organs are targets of EDCs, and research from the past few years suggests that the organization of the neuroendocrine control of reproduction is also sensitive to environmental cues and disruption. Among other mechanisms, EDCs interfere with the action of steroidal and non-steroidal receptors, and alter enzymatic, metabolic and epigenetic pathways during development. In this Review, we discuss the cellular and molecular consequences of perinatal exposure (mostly in rodents) to representative EDCs with a focus on the neuroendocrine control of reproduction, pubertal timing and the female ovulatory cycle.


Asunto(s)
Disruptores Endocrinos/farmacología , Exposición a Riesgos Ambientales , Epigénesis Genética/efectos de los fármacos , Estradiol/metabolismo , Hormona Liberadora de Gonadotropina/efectos de los fármacos , Hipotálamo/efectos de los fármacos , Neuronas/efectos de los fármacos , Animales , Movimiento Celular , Metilación de ADN/efectos de los fármacos , Retroalimentación Fisiológica/efectos de los fármacos , Femenino , GABAérgicos/metabolismo , Células Germinativas/metabolismo , Ácido Glutámico/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Código de Histonas/efectos de los fármacos , Humanos , Hipotálamo/citología , Hipotálamo/crecimiento & desarrollo , Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Masculino , Neuronas/metabolismo , Ovulación/efectos de los fármacos , Ovulación/metabolismo , Embarazo , Efectos Tardíos de la Exposición Prenatal
12.
Curr Opin Endocr Metab Res ; 14: 65-72, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32905232

RESUMEN

In the arcuate nucleus (ARC) of the hypothalamus reside two neuronal systems in charge of regulating feeding control and reproductive development. The melanocortin system responds to metabolic fluctuations adjusting food intake, whereas kisspeptin neurons are in charge of the excitatory control of Gonadotropin Hormone Releasing Hormone (GnRH) neurons. While it is known that the melanocortin system regulates GnRH neuronal activity, it was recently demonstrated that kisspeptin neurons not only innervate melanocortin neurons, but also play an active role in the control of metabolism. These two neuronal systems are intricately interconnected forming loops of stimulation and inhibition according to metabolic status. Furthermore, intracellular and epigenetic pathways respond to external environmental signals by changing DNA conformation and gene expression. Here we review the role of Silent mating type Information Regulation 2 homologue 1 (Sirt1), a class III NAD+ dependent protein deacetylase, in the ARC control of pubertal development and feeding behavior.

13.
Sci Rep ; 10(1): 10073, 2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32572045

RESUMEN

Cats are a critical pre-clinical model for studying adeno-associated virus (AAV) vector-mediated gene therapies. A recent study has described the high prevalence of anti-AAV neutralizing antibodies among domestic cats in Switzerland. However, our knowledge of pre-existing humoral immunity against various AAV serotypes in cats is still limited. Here, we show that, although antibodies binding known AAV serotypes (AAV1 to AAV11) are prevalent in cats living in the Northeastern United States, these antibodies do not necessarily neutralize AAV infectivity. We analyzed sera from 35 client-owned, 20 feral, and 30 specific pathogen-free (SPF) cats for pre-existing AAV-binding antibodies against the 11 serotypes. Antibody prevalence was 7 to 90% with an overall median of 50%. The AAV-binding antibodies showed broad reactivities with other serotypes. Of 44 selected antibodies binding AAV2, AAV6 or AAV9, none exhibited appreciable neutralizing activities. Instead, AAV6 or AAV9-binding antibodies showed a transduction-enhancing effect. AAV6-binding antibodies were highly prevalent in SPF cats (83%), but this was primarily due to cross-reactivity with preventive vaccine-induced anti-feline panleukopenia virus antibodies. These results indicate that prevalent pre-existing immunity in cats is not necessarily inhibitory to AAV and highlight a substantial difference in the nature of AAV-binding antibodies in cats living in geographically different regions.


Asunto(s)
Anticuerpos Antivirales/metabolismo , Dependovirus/inmunología , Suero/inmunología , Animales , Anticuerpos Neutralizantes/metabolismo , Gatos , Dependovirus/clasificación , Inmunidad Humoral , New England , Serogrupo , Suiza , Transducción Genética
14.
J Clin Invest ; 130(8): 4486-4500, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32407292

RESUMEN

The identification of loss-of-function mutations in MKRN3 in patients with central precocious puberty in association with the decrease in MKRN3 expression in the medial basal hypothalamus of mice before the initiation of reproductive maturation suggests that MKRN3 is acting as a brake on gonadotropin-releasing hormone (GnRH) secretion during childhood. In the current study, we investigated the mechanism by which MKRN3 prevents premature manifestation of the pubertal process. We showed that, as in mice, MKRN3 expression is high in the hypothalamus of rats and nonhuman primates early in life, decreases as puberty approaches, and is independent of sex steroid hormones. We demonstrated that Mkrn3 is expressed in Kiss1 neurons of the mouse hypothalamic arcuate nucleus and that MKRN3 repressed promoter activity of human KISS1 and TAC3, 2 key stimulators of GnRH secretion. We further showed that MKRN3 has ubiquitinase activity, that this activity is reduced by MKRN3 mutations affecting the RING finger domain, and that these mutations compromised the ability of MKRN3 to repress KISS1 and TAC3 promoter activity. These results indicate that MKRN3 acts to prevent puberty initiation, at least in part, by repressing KISS1 and TAC3 transcription and that this action may involve an MKRN3-directed ubiquitination-mediated mechanism.


Asunto(s)
Kisspeptinas/biosíntesis , Neuronas/metabolismo , Pubertad Precoz/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , Núcleo Arqueado del Hipotálamo/patología , Femenino , Regulación de la Expresión Génica , Hormona Liberadora de Gonadotropina/genética , Hormona Liberadora de Gonadotropina/metabolismo , Células HEK293 , Humanos , Kisspeptinas/genética , Masculino , Ratones , Neuroquinina B/genética , Neuroquinina B/metabolismo , Neuronas/patología , Regiones Promotoras Genéticas , Pubertad Precoz/genética , Pubertad Precoz/patología , Ratas Sprague-Dawley , Transcripción Genética , Ubiquitina-Proteína Ligasas/genética
15.
J Res Adolesc ; 29(1): 54-79, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30869843

RESUMEN

The adolescent transition begins with the onset of puberty which, upstream in the brain, is initiated by the gonadotropin-releasing hormone (GnRH) pulse generator that activates the release of peripheral sex hormones. Substantial research in human and animal models has revealed a myriad of cellular networks and heritable genes that control the GnRH pulse generator allowing the individual to begin the process of reproductive competence and sexual maturation. Here, we review the latest knowledge in neuroendocrine pubertal research with emphasis on genetic and epigenetic mechanisms underlying the pubertal transition.


Asunto(s)
Salud del Adolescente , Epigénesis Genética , Hormonas Esteroides Gonadales/metabolismo , Sistemas Neurosecretores/fisiología , Regiones Promotoras Genéticas/fisiología , Pubertad/genética , Maduración Sexual/genética , Adolescente , Animales , Femenino , Humanos , Kisspeptinas , Hormona Luteinizante , Masculino
16.
Neuroendocrinology ; 109(3): 208-217, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30731454

RESUMEN

To attain sexual competence, all mammalian species go through puberty, a maturational period during which body growth and development of secondary sexual characteristics occur. Puberty begins when the diurnal pulsatile gonadotropin-releasing hormone (GnRH) release from the hypothalamus increases for a prolonged period of time, driving the adenohypophysis to increase the pulsatile release of luteinizing hormone with diurnal periodicity. Increased pubertal GnRH secretion does not appear to be driven by inherent changes in GnRH neuronal activity; rather, it is induced by changes in transsynaptic and glial inputs to GnRH neurons. We now know that these changes involve a reduction in inhibitory transsynaptic inputs combined with increased transsynaptic and glial excitatory inputs to the GnRH neuronal network. Although the pubertal process is known to have a strong genetic component, during the last several years, epigenetics has been implicated as a significant regulatory mechanism through which GnRH release is first repressed before puberty and is involved later on during the increase in GnRH secretion that brings about the pubertal process. According to this concept, a central target of epigenetic regulation is the transcriptional machinery of neurons implicated in stimulating GnRH release. Here, we will briefly review the hormonal changes associated with the advent of female puberty and the role that excitatory transsynaptic inputs have in this process. In addition, we will examine the 3 major groups of epigenetic modifying enzymes expressed in the neuroendocrine hypothalamus, which was recently shown to be involved in pubertal development and progression.


Asunto(s)
Cromatina/metabolismo , Pubertad/metabolismo , Maduración Sexual/fisiología , Animales , Epigénesis Genética , Femenino , Humanos
17.
Hum Mol Genet ; 28(8): 1357-1368, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30608578

RESUMEN

The initiation of puberty is orchestrated by an augmentation of gonadotropin-releasing hormone (GnRH) secretion from a few thousand hypothalamic neurons. Recent findings have indicated that the neuroendocrine control of puberty may be regulated by a hierarchically organized network of transcriptional factors acting upstream of GnRH. These include enhanced at puberty 1 (EAP1), which contributes to the initiation of female puberty through transactivation of the GnRH promoter. However, no EAP1 mutations have been found in humans with disorders of pubertal timing. We performed whole-exome sequencing in 67 probands and 93 relatives from a large cohort of familial self-limited delayed puberty (DP). Variants were analyzed for rare, potentially pathogenic variants enriched in case versus controls and relevant to the biological control of puberty. We identified one in-frame deletion (Ala221del) and one rare missense variant (Asn770His) in EAP1 in two unrelated families; these variants were highly conserved and potentially pathogenic. Expression studies revealed Eap1 mRNA abundance in peri-pubertal mouse hypothalamus. EAP1 binding to the GnRH1 promoter increased in monkey hypothalamus at the onset of puberty as determined by chromatin immunoprecipitation. Using a luciferase reporter assay, EAP1 mutants showed a reduced ability to trans-activate the GnRH promoter compared to wild-type EAP1, due to reduced protein levels caused by the Ala221del mutation and subcellular mislocation caused by the Asn770His mutation, as revealed by western blot and immunofluorescence, respectively. In conclusion, we have identified the first EAP1 mutations leading to reduced GnRH transcriptional activity resulting in a phenotype of self-limited DP.


Asunto(s)
Hormona Liberadora de Gonadotropina/fisiología , Pubertad Tardía/genética , Securina/genética , Adolescente , Adulto , Animales , Niño , Femenino , Regulación de la Expresión Génica/genética , Hormona Liberadora de Gonadotropina/genética , Humanos , Hipotálamo/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Neuronas/metabolismo , Regiones Promotoras Genéticas/genética , Pubertad/genética , Pubertad/fisiología , ARN Mensajero/genética , Securina/fisiología , Maduración Sexual/genética , Transactivadores/genética , Factores de Transcripción/genética , Secuenciación del Exoma , Adulto Joven
18.
Neuropsychopharmacology ; 44(6): 1103-1113, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30610192

RESUMEN

Alcohol use disorder (AUD) is a chronic condition with devastating health and socioeconomic effects. Still, pharmacotherapies to treat AUD are scarce. In a prior study aimed at identifying novel AUD therapeutic targets, we investigated the DNA methylome of the nucleus accumbens core (NAcc) of rhesus macaques after chronic alcohol use. The G-protein coupled receptor 39 (GPR39) gene was hypermethylated and its expression downregulated in heavy alcohol drinking macaques. GPR39 encodes a Zn2+-binding metabotropic receptor known to modulate excitatory and inhibitory neurotransmission, the balance of which is altered in AUD. These prior findings suggest that a GPR39 agonist would reduce alcohol intake. Using a drinking-in-the-dark two bottle choice (DID-2BC) model, we showed that an acute 7.5 mg/kg dose of the GPR39 agonist, TC-G 1008, reduced ethanol intake in mice without affecting total fluid intake, locomotor activity or saccharin preference. Furthermore, repeated doses of the agonist prevented ethanol escalation in an intermittent access 2BC paradigm (IA-2BC). This effect was reversible, as ethanol escalation followed agonist "wash out". As observed during the DID-2BC study, a subsequent acute agonist challenge during the IA-2BC procedure reduced ethanol intake by ~47%. Finally, Gpr39 activation was associated with changes in Gpr39 and Bdnf expression, and in glutamate release in the NAcc. Together, our findings suggest that GPR39 is a promising target for the development of prevention and treatment therapies for AUD.


Asunto(s)
Alcoholismo , Conducta Animal/efectos de los fármacos , Conducta de Ingestión de Líquido/efectos de los fármacos , Núcleo Accumbens/metabolismo , Pirimidinas/farmacología , Receptores Acoplados a Proteínas G/agonistas , Sulfonamidas/farmacología , Consumo de Bebidas Alcohólicas , Alcoholismo/tratamiento farmacológico , Alcoholismo/prevención & control , Animales , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Macaca mulatta , Ratones , Ratones Endogámicos C57BL , Pirimidinas/administración & dosificación , Sulfonamidas/administración & dosificación
19.
Clin Epigenetics ; 10(1): 146, 2018 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-30466473

RESUMEN

BACKGROUND: Recent studies demonstrated that changes in DNA methylation (DNAm) and inactivation of two imprinted genes (MKRN3 and DLK1) alter the onset of female puberty. We aimed to investigate the association of DNAm profiling with the timing of human puberty analyzing the genome-wide DNAm patterns of peripheral blood leukocytes from ten female patients with central precocious puberty (CPP) and 33 healthy girls (15 pre- and 18 post-pubertal). For this purpose, we performed comparisons between the groups: pre- versus post-pubertal, CPP versus pre-pubertal, and CPP versus post-pubertal. RESULTS: Analyzing the methylome changes associated with normal puberty, we identified 120 differentially methylated regions (DMRs) when comparing pre- and post-pubertal healthy girls. Most of these DMRs were hypermethylated in the pubertal group (99%) and located on the X chromosome (74%). Only one genomic region, containing the promoter of ZFP57, was hypomethylated in the pubertal group. ZFP57 is a transcriptional repressor required for both methylation and imprinting of multiple genomic loci. ZFP57 expression in the hypothalamus of female rhesus monkeys increased during peripubertal development, suggesting enhanced repression of downstream ZFP57 target genes. Fourteen other zinc finger (ZNF) genes were related to the hypermethylated DMRs at normal puberty. Analyzing the methylome changes associated with CPP, we demonstrated that the patients with CPP exhibited more hypermethylated CpG sites compared to both pre-pubertal (81%) and pubertal (89%) controls. Forty-eight ZNF genes were identified as having hypermethylated CpG sites in CPP. CONCLUSION: Methylome profiling of girls at normal and precocious puberty revealed a widespread pattern of DNA hypermethylation, indicating that the pubertal process in humans is associated with specific changes in epigenetically driven regulatory control. Moreover, changes in methylation of several ZNF genes appear to be a distinct epigenetic modification underlying the initiation of human puberty.


Asunto(s)
Metilación de ADN , Proteínas de Unión al ADN/genética , Estudio de Asociación del Genoma Completo/métodos , Pubertad Precoz/genética , Factores de Transcripción/genética , Animales , Estudios de Casos y Controles , Niño , Epigénesis Genética , Femenino , Impresión Genómica , Humanos , Macaca mulatta , Linaje , Regiones Promotoras Genéticas , Proteínas Represoras , Dedos de Zinc
20.
Nat Commun ; 9(1): 1977, 2018 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-29773799

RESUMEN

Population studies elucidating the genetic architecture of reproductive ageing have been largely limited to European ancestries, restricting the generalizability of the findings and overlooking possible key genes poorly captured by common European genetic variation. Here, we report 26 loci (all P < 5 × 10-8) for reproductive ageing, i.e. puberty timing or age at menopause, in a non-European population (up to 67,029 women of Japanese ancestry). Highlighted genes for menopause include GNRH1, which supports a primary, rather than passive, role for hypothalamic-pituitary GnRH signalling in the timing of menopause. For puberty timing, we demonstrate an aetiological role for receptor-like protein tyrosine phosphatases by combining evidence across population genetics and pre- and peri-pubertal changes in hypothalamic gene expression in rodent and primate models. Furthermore, our findings demonstrate widespread differences in allele frequencies and effect estimates between Japanese and European associated variants, highlighting the benefits and challenges of large-scale trans-ethnic approaches.


Asunto(s)
Envejecimiento/genética , Pueblo Asiatico/genética , Sitios Genéticos/fisiología , Menarquia/genética , Menopausia/genética , Adolescente , Adulto , Factores de Edad , Animales , Niño , Femenino , Regulación del Desarrollo de la Expresión Génica/fisiología , Frecuencia de los Genes/fisiología , Variación Genética/fisiología , Humanos , Hipotálamo/metabolismo , Japón , Macaca mulatta , Metaanálisis como Asunto , Persona de Mediana Edad , Modelos Animales , Ratas Sprague-Dawley , Población Blanca/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...