Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Mol Ther ; 27(8): 1389-1406, 2019 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-31178391

RESUMEN

Site-specific correction of a point mutation causing a monogenic disease in autologous hematopoietic stem and progenitor cells (HSPCs) can be used as a treatment of inherited disorders of the blood cells. Sickle cell disease (SCD) is an ideal model to investigate the potential use of gene editing to transvert a single point mutation at the ß-globin locus (HBB). We compared the activity of zinc-finger nucleases (ZFNs) and CRISPR/Cas9 for editing, and homologous donor templates delivered as single-stranded oligodeoxynucleotides (ssODNs), adeno-associated virus serotype 6 (AAV6), integrase-deficient lentiviral vectors (IDLVs), and adenovirus 5/35 serotype (Ad5/35) to transvert the base pair responsible for SCD in HBB in primary human CD34+ HSPCs. We found that the ZFNs and Cas9 directed similar frequencies of nuclease activity. In vitro, AAV6 led to the highest frequencies of homology-directed repair (HDR), but levels of base pair transversions were significantly reduced when analyzing cells in vivo in immunodeficient mouse xenografts, with similar frequencies achieved with either AAV6 or ssODNs. AAV6 also caused significant impairment of colony-forming progenitors and human cell engraftment. Gene correction in engrafting hematopoietic stem cells may be limited by the capacity of the cells to mediate HDR, suggesting additional manipulations may be needed for high-efficiency gene correction in HSPCs.


Asunto(s)
Anemia de Células Falciformes/genética , Edición Génica , Células Madre Hematopoyéticas/metabolismo , Mutación , Globinas beta/genética , Anemia de Células Falciformes/metabolismo , Anemia de Células Falciformes/terapia , Sistemas CRISPR-Cas , Dependovirus , Endonucleasas/genética , Expresión Génica , Marcación de Gen , Terapia Genética , Vectores Genéticos/genética , Humanos , Parvovirinae/genética , Donantes de Tejidos , Transducción Genética , Nucleasas con Dedos de Zinc/genética
2.
Stem Cells ; 37(2): 284-294, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30372555

RESUMEN

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated system (Cas9)-mediated gene editing of human hematopoietic stem cells (hHSCs) is a promising strategy for the treatment of genetic blood diseases through site-specific correction of identified causal mutations. However, clinical translation is hindered by low ratio of precise gene modification using the corrective donor template (homology-directed repair, HDR) to gene disruption (nonhomologous end joining, NHEJ) in hHSCs. By using a modified version of Cas9 with reduced nuclease activity in G1 phase of cell cycle when HDR cannot occur, and transiently increasing the proportion of cells in HDR-preferred phases (S/G2), we achieved a four-fold improvement in HDR/NHEJ ratio over the control condition in vitro, and a significant improvement after xenotransplantation of edited hHSCs into immunodeficient mice. This strategy for improving gene editing outcomes in hHSCs has important implications for the field of gene therapy, and can be applied to diseases where increased HDR/NHEJ ratio is critical for therapeutic success. Stem Cells 2019;37:284-294.


Asunto(s)
Reparación del ADN/genética , Edición Génica/métodos , Trasplante de Células Madre Hematopoyéticas/métodos , Células Madre/metabolismo , Acondicionamiento Pretrasplante/métodos , Animales , Humanos , Ratones
3.
Cell Stem Cell ; 21(5): 574-590, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-29100011

RESUMEN

The use of allogeneic hematopoietic stem cells (HSCs) to treat genetic blood cell diseases has become a clinical standard but is limited by the availability of suitable matched donors and potential immunologic complications. Gene therapy using autologous HSCs should avoid these limitations and thus may be safer. Progressive improvements in techniques for genetic correction of HSCs, by either vector gene addition or gene editing, are facilitating successful treatments for an increasing number of diseases. We highlight the progress, successes, and remaining challenges toward the development of HSC gene therapies and discuss lessons they provide for the development of future clinical stem cell therapies.


Asunto(s)
Terapia Genética , Células Madre Hematopoyéticas/citología , Ensayos Clínicos como Asunto , Edición Génica , Técnicas de Transferencia de Gen , Vectores Genéticos/metabolismo , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Humanos
4.
Mol Syst Biol ; 13(2): 914, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28202506

RESUMEN

Copy number alteration (CNA) profiling of human tumors has revealed recurrent patterns of DNA amplifications and deletions across diverse cancer types. These patterns are suggestive of conserved selection pressures during tumor evolution but cannot be fully explained by known oncogenes and tumor suppressor genes. Using a pan-cancer analysis of CNA data from patient tumors and experimental systems, here we show that principal component analysis-defined CNA signatures are predictive of glycolytic phenotypes, including 18F-fluorodeoxy-glucose (FDG) avidity of patient tumors, and increased proliferation. The primary CNA signature is enriched for p53 mutations and is associated with glycolysis through coordinate amplification of glycolytic genes and other cancer-linked metabolic enzymes. A pan-cancer and cross-species comparison of CNAs highlighted 26 consistently altered DNA regions, containing 11 enzymes in the glycolysis pathway in addition to known cancer-driving genes. Furthermore, exogenous expression of hexokinase and enolase enzymes in an experimental immortalization system altered the subsequent copy number status of the corresponding endogenous loci, supporting the hypothesis that these metabolic genes act as drivers within the conserved CNA amplification regions. Taken together, these results demonstrate that metabolic stress acts as a selective pressure underlying the recurrent CNAs observed in human tumors, and further cast genomic instability as an enabling event in tumorigenesis and metabolic evolution.


Asunto(s)
Variaciones en el Número de Copia de ADN , Perfilación de la Expresión Génica/métodos , Glucólisis , Neoplasias/genética , Línea Celular Tumoral , Evolución Molecular , Amplificación de Genes , Eliminación de Gen , Regulación Neoplásica de la Expresión Génica , Inestabilidad Genómica , Humanos , Redes y Vías Metabólicas , Análisis de Componente Principal , Selección Genética
5.
Cell Discov ; 2: 16028, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27648299

RESUMEN

A prominent mechanism of acquired resistance to BRAF inhibitors in BRAF (V600) -mutant melanoma is associated with the upregulation of receptor tyrosine kinases. Evidences suggested that this resistance mechanism is part of a more complex cellular adaptation process. Using an integrative strategy, we found this mechanism to invoke extensive transcriptomic, (phospho-) proteomic and phenotypic alterations that accompany a cellular transition to a de-differentiated, mesenchymal and invasive state. Even short-term BRAF-inhibitor exposure leads to an early adaptive, differentiation state change-characterized by a slow-cycling, persistent state. The early persistent state is distinct from the late proliferative, resistant state. However, both differentiation states share common signaling alterations including JUN upregulation. Motivated by the similarities, we found that co-targeting of BRAF and JUN is synergistic in killing fully resistant cells; and when used up-front, co-targeting substantially impairs the formation of the persistent subpopulation. We confirmed that JUN upregulation is a common response to BRAF inhibitor treatment in clinically treated patient tumors. Our findings demonstrate that events shared between early- and late-adaptation states provide candidate up-front co-treatment targets.

6.
Sci Rep ; 6: 27454, 2016 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-27273450

RESUMEN

Approximately 75% of melanomas have known driver oncogenic mutations in BRAF, NRAS, GNA11 or GNAQ, while the mutations providing constitutive oncogenic signaling in the remaining melanomas are not known. We established a melanoma cell line from a tumor with none of the common driver mutations. This cell line demonstrated a signaling profile similar to BRAF-mutants, but lacked sensitivity to the BRAF inhibitor vemurafenib. RNA-seq mutation data implicated CRAF R391W as the alternative driver mutation of this melanoma. CRAF R391W was homozygous and over expressed. These melanoma cells were highly sensitive to CRAF, but not BRAF knockdown. In reconstitution experiments, CRAF R391W, but not CRAF WT, transformed NIH3T3 cells in soft-agar colony formation assays, increased kinase activity in vitro, induced MAP kinase signaling and conferred vemurafenib resistance. MAP kinase inducing activity was dependent on CRAF dimerization. Thus, CRAF is a bona fide alternative oncogene for BRAF/NRAS/GNAQ/GNA11 wild type melanomas.


Asunto(s)
Melanoma/genética , Oncogenes , Proteínas Proto-Oncogénicas c-raf/genética , Anciano , Animales , Humanos , Sistema de Señalización de MAP Quinasas , Ratones , Células 3T3 NIH
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA