Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Mol Cell Cardiol ; 194: 70-84, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38969334

RESUMEN

We recently discovered that steroid receptor coactivators (SRCs) SRCs-1, 2 and 3, are abundantly expressed in cardiac fibroblasts (CFs) and their activation with the SRC small molecule stimulator MCB-613 improves cardiac function and dramatically lowers pro-fibrotic signaling in CFs post-myocardial infarction. These findings suggest that CF-derived SRC activation could be beneficial in the mitigation of chronic heart failure after ischemic insult. However, the cardioprotective mechanisms by which CFs contribute to cardiac pathological remodeling are unclear. Here we present studies designed to identify the molecular and cellular circuitry that governs the anti-fibrotic effects of an MCB-613 derivative, MCB-613-10-1, in CFs. We performed cytokine profiling and whole transcriptome and proteome analyses of CF-derived signals in response to MCB-613-10-1. We identified the NRF2 pathway as a direct MCB-613-10-1 therapeutic target for promoting resistance to oxidative stress in CFs. We show that MCB-613-10-1 promotes cell survival of anti-fibrotic CFs exposed to oxidative stress by suppressing apoptosis. We demonstrate that an increase in HMOX1 expression contributes to CF resistance to oxidative stress-mediated apoptosis via a mechanism involving SRC co-activation of NRF2, hence reducing inflammation and fibrosis. We provide evidence that MCB-613-10-1 acts as a protectant against oxidative stress-induced mitochondrial damage. Our data reveal that SRC stimulation of the NRF2 transcriptional network promotes resistance to oxidative stress and highlights a mechanistic approach toward addressing pathologic cardiac remodeling.


Asunto(s)
Fibroblastos , Miocardio , Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Transducción de Señal , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Animales , Fibroblastos/metabolismo , Transducción de Señal/efectos de los fármacos , Miocardio/metabolismo , Miocardio/patología , Apoptosis/efectos de los fármacos , Activación Transcripcional/efectos de los fármacos , Fibrosis , Hemo-Oxigenasa 1/metabolismo , Hemo-Oxigenasa 1/genética , Ratas , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Ratones
2.
J Am Chem Soc ; 146(32): 22396-22404, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39079063

RESUMEN

Although many redox signaling molecules are present at low concentrations, typically ranging from micromolar to submicromolar levels, they often play essential roles in a wide range of biological pathways and disease mechanisms. However, accurately measuring low-abundant analytes has been a significant challenge due to the lack of sensitivity and quantitative capability of existing measurement methods. In this study, we introduced a novel chemically induced amplifiable system for quantifying low-abundance redox signaling molecules in living cells. We utilized H2O2 as a proof-of-concept analyte and developed a probe that quantifies cellular peroxide levels by combining the NanoBiT system with androgen receptor dimerization as a reporting mechanism. Our system demonstrated a highly sensitive response to cellular peroxide changes induced both endogenously and exogenously. Furthermore, the system can be adapted for the quantification of other signaling molecules if provided with suitable probing chemistry.


Asunto(s)
Peróxido de Hidrógeno , Receptores Androgénicos , Peróxido de Hidrógeno/análisis , Peróxido de Hidrógeno/química , Humanos , Receptores Androgénicos/metabolismo , Oxidación-Reducción
3.
Front Immunol ; 15: 1389041, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38698860

RESUMEN

Steroid receptor coactivators (SRCs) are master regulators of transcription that play key roles in human physiology and pathology. SRCs are particularly important for the regulation of the immune system with major roles in lymphocyte fate determination and function, macrophage activity, regulation of nuclear factor κB (NF-κB) transcriptional activity and other immune system biology. The three members of the p160 SRC family comprise a network of immune-regulatory proteins that can function independently or act in synergy with each other, and compensate for - or moderate - the activity of other SRCs. Recent evidence indicates that the SRCs are key participants in governing numerous aspects of CD4+ T cell biology. Here we review findings that establish the SRCs as essential regulators of regulatory T cells (Tregs) and T helper 17 (Th17) cells, with a focus on their crucial roles in Treg immunity in cancer and Treg-Th17 cell phenotypic plasticity.


Asunto(s)
Linfocitos T Reguladores , Células Th17 , Humanos , Neoplasias/inmunología , Neoplasias/metabolismo , Coactivadores de Receptor Nuclear/metabolismo , Linfocitos T Reguladores/inmunología , Células Th17/inmunología , Células Th17/metabolismo
4.
PLoS One ; 19(4): e0289902, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38683834

RESUMEN

Mantle cell lymphoma (MCL) has a poor prognosis and high relapse rates despite current therapies, necessitating novel treatment regimens. Inhibition of SRC-3 show effectiveness in vivo and in vitro in other B cell lymphomas. Additionally, previous studies have shown that SRC-3 is highly expressed in the lymph nodes of B cell non-Hodgkin's lymphoma patients, suggesting SRC-3 may play a role in the progression of B cell lymphoma. This study aimed to investigate novel SRC-3 inhibitors, SI-10 and SI-12, in mantle cell lymphoma. The cytotoxic effects of SI-10 and SI-12 were evaluated in vitro and demonstrated dose-dependent cytotoxicity in a panel of MCL cell lines. The in vivo efficacy of SI-10 was confirmed in two ibrutinib-resistant models: an immunocompetent disseminated A20 mouse model of B-cell lymphoma and a human PDX model of MCL. Notably, SI-10 treatment also resulted in a significant extension of survival in vivo with low toxicity in both ibrutinib-resistant murine models. We have investigated SI-10 as a novel anti-lymphoma compound via the inhibition of SRC-3 activity. These findings indicate that targeting SRC-3 should be investigated in combination with current clinical therapeutics as a novel strategy to expand the therapeutic index and to improve lymphoma outcomes.


Asunto(s)
Adenina/análogos & derivados , Linfoma de Células del Manto , Linfoma de Células del Manto/tratamiento farmacológico , Linfoma de Células del Manto/patología , Animales , Humanos , Ratones , Línea Celular Tumoral , Adenina/farmacología , Adenina/uso terapéutico , Piperidinas/farmacología , Piperidinas/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Resistencia a Antineoplásicos/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Pirazoles/farmacología , Pirazoles/uso terapéutico , Femenino
5.
J Med Chem ; 67(7): 5333-5350, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38551814

RESUMEN

Steroid receptor coactivator 3 (SRC-3) is a critical mediator of many intracellular signaling pathways that are crucial for cancer proliferation and metastasis. In this study, we performed structure-activity relationship exploration and drug-like optimization of the hit compound SI-2, guided by in vitro/in vivo metabolism studies and cytotoxicity assays. Our efforts led to the discovery of two lead compounds, SI-10 and SI-12. Both compounds exhibit potent cytotoxicity against a panel of human cancer cell lines and demonstrate acceptable pharmacokinetic properties. A biotinylated estrogen response element pull-down assay demonstrated that SI-12 could disrupt the recruitment of SRC-3 and p300 in the estrogen receptor complex. Importantly, SI-10 and SI-12 significantly inhibited tumor growth and metastasis in vivo without appreciable acute toxicity. These results demonstrate the potential of SI-10 and SI-12 as drug candidates for cancer therapy, given their potent SRC-3 inhibition and promising pharmacokinetic and toxicity profiles.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Coactivador 3 de Receptor Nuclear/metabolismo , Línea Celular , Relación Estructura-Actividad , Transducción de Señal , Proliferación Celular , Línea Celular Tumoral , Antineoplásicos/farmacología
6.
FASEB J ; 37(12): e23313, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37962238

RESUMEN

Although we have shown that steroid receptor coactivator-2 (SRC-2), a member of the p160/SRC family of transcriptional coregulators, is essential for decidualization of both human and murine endometrial stromal cells, SRC-2's role in the earlier stages of the implantation process have not been adequately addressed. Using a conditional SRC-2 knockout mouse (SRC-2d/d ) in timed natural pregnancy studies, we show that endometrial SRC-2 is required for embryo attachment and adherence to the luminal epithelium. Implantation failure is associated with the persistent expression of Mucin 1 and E-cadherin on the apical surface and basolateral adherens junctions of the SRC-2d/d luminal epithelium, respectively. These findings indicate that the SRC-2d/d luminal epithelium fails to exhibit a plasma membrane transformation (PMT) state known to be required for the development of uterine receptivity. Transcriptomics demonstrated that the expression of genes involved in steroid hormone control of uterine receptivity were significantly disrupted in the SRC-2d/d endometrium as well as genes that control epithelial tight junctional biology and the emergence of the epithelial mesenchymal transition state, with the latter sharing similar biological properties with PMT. Collectively, these findings uncover a new role for endometrial SRC-2 in the induction of the luminal epithelial PMT state, which is a prerequisite for the development of uterine receptivity and early pregnancy establishment.


Asunto(s)
Implantación del Embrión , Útero , Animales , Femenino , Humanos , Ratones , Embarazo , Implantación del Embrión/genética , Endometrio/metabolismo , Células Epiteliales/metabolismo , Transición Epitelial-Mesenquimal , Ratones Noqueados , Coactivador 2 del Receptor Nuclear/genética , Útero/metabolismo
7.
Proc Natl Acad Sci U S A ; 120(23): e2221707120, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37253006

RESUMEN

Steroid receptor coactivator 3 (SRC-3) is most strongly expressed in regulatory T cells (Tregs) and B cells, suggesting that it plays an important role in the regulation of Treg function. Using an aggressive E0771 mouse breast cell line syngeneic immune-intact murine model, we observed that breast tumors were "permanently eradicated" in a genetically engineered tamoxifen-inducible Treg-cell-specific SRC-3 knockout (KO) female mouse that does not possess a systemic autoimmune pathological phenotype. A similar eradication of tumor was noted in a syngeneic model of prostate cancer. A subsequent injection of additional E0771 cancer cells into these mice showed continued resistance to tumor development without the need for tamoxifen induction to produce additional SRC-3 KO Tregs. SRC-3 KO Tregs were highly proliferative and preferentially infiltrated into breast tumors by activating the chemokine (C-C motif) ligand (Ccl) 19/Ccl21/chemokine (C-C motif) receptor (Ccr)7 signaling axis, generating antitumor immunity by enhancing the interferon-γ/C-X-C motif chemokine ligand (Cxcl) 9 signaling axis to facilitate the entrance and function of effector T cells and natural killer cells. SRC-3 KO Tregs also show a dominant effect by blocking the immune suppressive function of WT Tregs. Importantly, a single adoptive transfer of SRC-3 KO Tregs into wild-type E0771 tumor-bearing mice can completely abolish preestablished breast tumors by generating potent antitumor immunity with a durable effect that prevents tumor reoccurrence. Therefore, treatment with SRC-3-deleted Tregs represents an approach to completely block tumor growth and recurrence without the autoimmune side effects that typically accompany immune checkpoint modulators.


Asunto(s)
Neoplasias de la Mama , Neoplasias Mamarias Animales , Coactivador 3 de Receptor Nuclear , Animales , Femenino , Masculino , Ratones , Ligandos , Ratones Noqueados , Coactivador 3 de Receptor Nuclear/genética , Linfocitos T Reguladores , Tamoxifeno/farmacología
8.
bioRxiv ; 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37034717

RESUMEN

Steroid receptor coactivator 3 (SRC-3) is most strongly expressed in regulatory T cells (Tregs) and B cells, suggesting that it plays an important role in the regulation of Treg function. Using an aggressive E0771 mouse breast cell line syngeneic immune-intact murine model, we observed that breast tumors were 'permanently eradicated' in a genetically engineered tamoxifen-inducible Treg-cell specific SRC-3 knockout (KO) female mouse that does not possess a systemic autoimmune pathological phenotype. A similar eradication of tumor was noted in a syngeneic model of prostate cancer. A subsequent injection of additional E0771 cancer cells into these mice showed continued resistance to tumor development without the need for tamoxifen induction to produce additional SRC-3 KO Tregs. SRC-3 KO Tregs were highly proliferative and preferentially infiltrated into breast tumors by activating the Chemokine (C-C motif) ligand (Ccl) 19/Ccl21/ Chemokine (C-C motif) Receptor (Ccr)7 signaling axis, generating antitumor immunity by enhancing the interferon-γ/C-X-C Motif Chemokine Ligand (Cxcl) 9 signaling axis to facilitate the entrance and function of effector T cells and Natural Killer cells. SRC-3 KO Tregs also show a dominant effect by blocking the immune suppressive function of WT Tregs. Importantly, a single adoptive transfer of SRC-3 KO Tregs into wild-type E0771 tumor-bearing mice can completely abolish pre-established breast tumors by generating potent antitumor immunity with a durable effect that prevents tumor reoccurrence. Therefore, treatment with SRC-3 deleted Tregs represents a novel approach to completely block tumor growth and recurrence without the autoimmune side-effects that typically accompany immune checkpoint modulators. Significance statement: Tregs are essential in restraining immune responses for immune homeostasis. SRC-3 is a pleiotropic coactivator, the second-most highly expressed transcriptional coactivator in Tregs, and a suspect in Treg function. The disruption of SRC-3 expression in Tregs leads to a 'complete lifetime eradication' of tumors in aggressive syngeneic breast cancer mouse models because deletion of SRC-3 alters the expression of a wide range of key genes involved in efferent and afferent Treg signaling. SRC-3KO Tregs confer this long-lasting protection against cancer recurrence in mice without an apparent systemic autoimmune pathological phenotype. Therefore, treatment with SRC-3 deleted Tregs could represent a novel and efficient future target for eliminating tumor growth and recurrence without the autoimmune side-effects that typically accompany immune checkpoint modulators.

9.
Res Sq ; 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36945511

RESUMEN

Mantle cell lymphoma (MCL) is a heterogeneous disease with a poor prognosis. Despite years of research in MCL, relapse occurs in patients with current therapeutic options necessitating the development of novel therapeutic agents. Previous attempts to pharmacologically inhibit SRC-3 show effectiveness in vivo and in vitro in other B cell lymphomas, and previous studies have shown that SRC-3 is highly expressed in the lymph nodes of B cell non-Hodgkin's lymphoma patients. This suggests that SRC-3 may play a role in the progression of B cell lymphoma and that the development of selective SRC inhibitors should be investigated. This study aimed to investigate novel SRC-3 inhibitors, SI-10 and SI-12, in mantle cell lymphoma. The cytotoxic effects of SI-10 and SI-12 were evaluated in a panel of MCL cell lines in vitro by resazurin assay. The in vivo efficacy of SI-10 was confirmed in two ibrutinib-resistant models: an immunocompetent disseminated A20 mouse model of B-cell lymphoma and a human PDX model of MCL. SI-10 treatment resulted in dose-dependent cytotoxicity in a panel of MCL cell lines in vitro. Notably, SI-10 treatment also resulted in a significant extension of survival in vivo with low toxicity in both ibrutinib-resistant murine models. We have investigated SI-10 as a novel anti-lymphoma compound via the inhibition of SRC-3 activity. These findings indicate that targeting SRC-3 should be investigated in combination with current clinical therapeutics as a novel strategy to expand the therapeutic index and to improve lymphoma outcomes.

10.
Proc Natl Acad Sci U S A ; 120(4): e2216436120, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36656865

RESUMEN

Enhancers not only activate target promoters to stimulate messenger RNA (mRNA) synthesis, but they themselves also undergo transcription to produce enhancer RNAs (eRNAs), the significance of which is not well understood. Transcription at the participating enhancer-promoter pair appears coordinated, but it is unclear why and how. Here, we employ cell-free transcription assays using constructs derived from the human GREB1 locus to demonstrate that transcription at an enhancer and its target promoter is interdependent. This interdependence is observable under conditions where direct enhancer-promoter contact (EPC) takes place. We demonstrate that transcription activation at a participating enhancer-promoter pair is dependent on i) the mutual availability of the enhancer and promoter, ii) the state of transcription at both the enhancer and promoter, iii) local abundance of both eRNA and mRNA, and iv) direct EPC. Our results suggest transcriptional interdependence between the enhancer and the promoter as the basis of their transcriptional concurrence and coordination throughout the genome. We propose a model where transcriptional concurrence, coordination and interdependence are possible if the participating enhancer and promoter are entangled in the form of EPC, reside in a proteinaceous bubble, and utilize shared transcriptional resources and regulatory inputs.


Asunto(s)
Elementos de Facilitación Genéticos , ARN , Humanos , Elementos de Facilitación Genéticos/genética , Regiones Promotoras Genéticas/genética , ARN/genética , ARN Mensajero/genética , Activación Transcripcional , Transcripción Genética , Regulación de la Expresión Génica
11.
bioRxiv ; 2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36711936

RESUMEN

Targeted therapies have revolutionized cancer chemotherapy. Unfortunately, most patients develop multifocal resistance to these drugs within a matter of months. Here, we used a high-throughput phenotypic small molecule screen to identify MCB-613 as a compound that selectively targets EGFR-mutant, EGFR inhibitor-resistant non-small cell lung cancer (NSCLC) cells harboring diverse resistance mechanisms. Subsequent proteomic and functional genomic screens involving MCB-613 identified its target in this context to be KEAP1, revealing that this gene is selectively essential in the setting of EGFR inhibitor resistance. In-depth molecular characterization demonstrated that (1) MCB-613 binds KEAP1 covalently; (2) a single molecule of MCB-613 is capable of bridging two KEAP1 monomers together; and, (3) this modification interferes with the degradation of canonical KEAP1 substrates such as NRF2. Surprisingly, NRF2 knockout sensitizes cells to MCB-613, suggesting that the drug functions through modulation of an alternative KEAP1 substrate. Together, these findings advance MCB-613 as a new tool for exploiting the selective essentiality of KEAP1 in drug-resistant, EGFR-mutant NSCLC cells.

12.
Front Reprod Health ; 4: 1033581, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36505394

RESUMEN

Steroid receptor coactivator-3 (SRC-3; also known as NCOA3 or AIB1) is a member of the multifunctional p160/SRC family of coactivators, which also includes SRC-1 and SRC-2. Clinical and cell-based studies as well as investigations on mice have demonstrated pivotal roles for each SRC in numerous physiological and pathophysiological contexts, underscoring their functional pleiotropy. We previously demonstrated the critical involvement of SRC-2 in murine embryo implantation as well as in human endometrial stromal cell (HESC) decidualization, a cellular transformation process required for trophoblast invasion and ultimately placentation. We show here that, like SRC-2, SRC-3 is expressed in the epithelial and stromal cellular compartments of the human endometrium during the proliferative and secretory phase of the menstrual cycle as well as in cultured HESCs. We also found that SRC-3 depletion in cultured HESCs results in a significant attenuation in the induction of a wide-range of established biomarkers of decidualization, despite exposure of these cells to a deciduogenic stimulus and normal progesterone receptor expression. These molecular findings are supported at the cellular level by the inability of HESCs to morphologically transform from a stromal fibroblastoid cell to an epithelioid decidual cell when endogenous SRC-3 levels are markedly reduced. To identify genes, signaling pathways and networks that are controlled by SRC-3 and potentially important for hormone-dependent decidualization, we performed RNA-sequencing on HESCs in which SRC-3 levels were significantly reduced at the time of administering the deciduogenic stimulus. Comparing HESC controls with HESCs deficient in SRC-3, gene enrichment analysis of the differentially expressed gene set revealed an overrepresentation of genes involved in chromatin remodeling, cell proliferation/motility, and programmed cell death. These predictive bioanalytic results were confirmed by the demonstration that SRC-3 is required for the expansion, migratory and invasive activities of the HESC population, cellular properties that are required in vivo in the formation or functioning of the decidua. Collectively, our results support SRC-3 as an important coregulator in HESC decidualization. Since perturbation of normal homeostatic levels of SRC-3 is linked with common gynecological disorders diagnosed in reproductive age women, this endometrial coregulator-along with its new molecular targets described here-may open novel clinical avenues in the diagnosis and/or treatment of a non-receptive endometrium, particularly in patients presenting non-aneuploid early pregnancy loss.

13.
Front Immunol ; 13: 1079011, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36582250

RESUMEN

Steroid Receptor Coactivators (SRCs) are essential regulators of transcription with a wide range of impact on human physiology and pathology. In immunology, SRCs play multiple roles; they are involved in the regulation of nuclear factor-κB (NF-κB), macrophage (MΦ) activity, lymphoid cells proliferation, development and function, to name just a few. The three SRC family members, SRC-1, SRC-2 and SRC-3, can exert their immunological function either in an independent manner or act in synergy with each other. In certain biological contexts, one SRC family member can compensate for lack of activity of another member, while in other cases one SRC can exert a biological function that competes against the function of another family counterpart. In this review we illustrate the diverse biological functionality of the SRCs with regard to their role in immunity. In the light of recent development of SRC small molecule inhibitors and stimulators, we discuss their potential relevance as modulators of the immunological activity of the SRCs for therapeutic purposes.


Asunto(s)
Inmunidad , Coactivadores de Receptor Nuclear , Receptores de Esteroides , Humanos , FN-kappa B , Coactivadores de Receptor Nuclear/inmunología
14.
Front Mol Neurosci ; 15: 1055295, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36533127

RESUMEN

Introduction: Pathologic remodeling of the brain following ischemic stroke results in neuronal loss, increased inflammation, oxidative stress, astrogliosis, and a progressive decrease in brain function. We recently demonstrated that stimulation of steroid receptor coactivator 3 with the small-molecule stimulator MCB-613 improves cardiac function in a mouse model of myocardial ischemia. Since steroid receptor coactivators are ubiquitously expressed in the brain, we reasoned that an MCB-613 derivative (MCB-10-1), could protect the brain following ischemic injury. To test this, we administered MCB-10-1 to rats following middle cerebral artery occlusion and reperfusion. Methods: Neurologic impairment and tissue damage responses were evaluated on day 1 and day 4 following injury in rats treated with control or 10-1. Results: We show that 10-1 attenuates injury post-stroke. 10-1 decreases infarct size and mitigates neurologic impairment. When given within 30 min post middle cerebral artery occlusion and reperfusion, 10-1 induces lasting protection from tissue damage in the ischemic penumbra concomitant with: (1) promotion of reparative microglia; (2) an increase in astrocyte NRF2 and GLT-1 expression; (3) early microglia activation; and (4) attenuation of astrogliosis. Discussion: Steroid receptor coactivator stimulation with MCB-10-1 is a potential therapeutic strategy for reducing inflammation and oxidative damage that cause neurologic impairment following an acute ischemic stroke.

15.
iScience ; 25(11): 105321, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36325049

RESUMEN

We report the quaternary structure of core transcriptional complex for the full-length human progesterone receptor-B (PR-B) homodimer with primary coactivator steroid receptor coactivator-2 (SRC-2) and the secondary coactivator p300/CREB-binding protein (CBP). The PR-B homodimer engages one SRC-2 mainly through its activation function 1 (AF1) in N-terminus. SRC-2 is positioned between PR-B and p300 leaving space for direct interaction between PR-B and p300 through PR-B's C-terminal AF2 and its unique AF3. Direct AF3/p300 interaction provides long-desired structural insights into the known functional differences between PR-B and the PR-A isoform lacking AF3. We reveal the contributions of each AF and demonstrate their structural basis in forming the PR-B dimer interface and PR-B/coactivator complex. Comparison of the PR-B/coactivator complex with other steroid receptor (estrogen receptor and androgen receptor) complexes also shows that each receptor has its unique mechanism for recruiting coactivators due to the highly variable N-termini among receptors.

16.
Breast Cancer Res ; 24(1): 73, 2022 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-36316775

RESUMEN

BACKGROUND: The tumor immune microenvironment (TIME) generated by cancer-infiltrating immune cells has a crucial role in promoting or suppressing breast cancer progression. However, whether the steroid receptor coactivator-3 (SRC-3) modulates TIME to progress breast cancer is unclear. Therefore, the present study evaluates whether SRC-3 generates a tumor-promoting TIME in breast tumors using a syngeneic immune-intact mouse model of breast cancer. METHODS: We employed E0771 and 4T1 breast cancer in immune-intact syngeneic female C57BL/6 and BALB/c mice, respectively. SI-2, a specific small-molecule inhibitor of SRC-3, was administered daily (2.5 mg/kg) to E0771 and 4T1 breast tumor-bearing immune-intact mice. In addition, SRC-3 knockdown (KD)-E0771 and SRC-3 KD-4T1 cells and their parental breast cancer cells were injected into their syngeneic immune-intact female mice versus immune-deficiency mice to validate that the host immune system is required for breast tumor suppression by SRC-3 KD in immune-intact mice. Furthermore, tumor-infiltrating immune cells (such as CD4+, CD8+, CD56+, and Foxp3+ cells) in E0771 and 4T1 breast cancers treated with SI-2 and in SRC-3 KD E0771 and 4T1 breast cancers were determined by immunohistochemistry. Additionally, cytokine levels in SI-2-treated and SRC-3 KD E0771 breast tumors and their control cancers were defined with a Mouse Cytokine Array. RESULTS: SRC-3 inhibition by SI-2 significantly suppressed the progression of breast cancer cells (E0771 and 4T1) into breast cancers in immune-intact syngeneic female mice. SRC-3 KD-E0771 and -4T1 breast cancer cells did not produce well-developed tumors in immune-intact syngeneic female mice compared to their parental cells, but SRC-3 KD breast cancers were well developed in immune-defective host mice. SRC-3 inhibition by SI-2 and SRC-3 KD effectively increased the numbers of cytotoxic immune cells, such as CD4+ and CD8+ T cells and CD56+ NK cells, and Interferon γ (Ifng) in breast cancers compared to vehicle. However, SI-2 treatment reduced the number of tumor-infiltrating CD4+/Foxp3+ regulatory T (Treg) cells compared to vehicle treatment. In addition, SRC-3 inhibition by SI-2 and SRC-3 KD increased C-X-C motif chemokine ligand 9 (Cxcl9) expression in breast cancer to recruit C-X-C motif chemokine receptor 3 (Cxcr3)-expressing cytotoxic immune cells into breast tumors. CONCLUSIONS: SRC-3 is a critical immunomodulator in breast cancer, generating a protumor immune microenvironment. SRC-3 inhibition by SI-2 or SRC-3 KD activates the Cxcl9/Cxcr3 axis in breast tumors and enhances the antitumor immune microenvironment to suppress breast cancer progression.


Asunto(s)
Neoplasias , Coactivador 3 de Receptor Nuclear , Microambiente Tumoral , Animales , Femenino , Ratones , Línea Celular Tumoral , Citocinas/metabolismo , Factores de Transcripción Forkhead , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Coactivador 3 de Receptor Nuclear/metabolismo
18.
Reproduction ; 164(2): 41-54, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35679138

RESUMEN

Although a non-malignant gynecological disorder, endometriosis displays some pathogenic features of malignancy, such as cell proliferation, migration, invasion and adaptation to hypoxia. Current treatments of endometriosis include pharmacotherapy and/or surgery, which are of limited efficacy and often associated with adverse side effects. Therefore, to develop more effective therapies to treat this disease, a broader understanding of the underlying molecular mechanisms that underpin endometriosis needs to be attained. Using immortalized human endometriotic epithelial and stromal cell lines, we demonstrate that the early growth response 1 (EGR1) transcription factor is essential for cell proliferation, migration and invasion, which represent some of the pathogenic properties of endometriotic cells. Genome-wide transcriptomics identified an EGR1-dependent transcriptome in human endometriotic epithelial cells that potentially encodes a diverse spectrum of proteins that are known to be involved in tissue pathologies. To underscore the utility of this transcriptomic data set, we demonstrate that carbonic anhydrase 9 (CA9), a homeostatic regulator of intracellular pH, is not only a molecular target of EGR1 but is also important for maintaining many of the cellular properties of human endometriotic epithelial cells that are also ascribed to EGR1. Considering therapeutic intervention strategies are actively being developed for EGR1 and CAIX in the treatment of other pathologies, we believe EGR1 and its transcriptome (which includes CA9) will offer not only a new conceptual framework to advance our understanding of endometriosis but will also furnish new molecular vulnerabilities to be leveraged as potential therapeutic options in the future treatment of endometriosis.


Asunto(s)
Proteína 1 de la Respuesta de Crecimiento Precoz , Endometriosis , Movimiento Celular , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Endometriosis/metabolismo , Endometrio/metabolismo , Células Epiteliales/metabolismo , Femenino , Humanos , Células del Estroma/metabolismo , Factores de Transcripción/metabolismo
19.
Cell Rep ; 38(10): 110491, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35263593

RESUMEN

The 12-h clock coordinates lipid homeostasis, energy metabolism, and stress rhythms via the transcriptional regulator XBP1. However, the biochemical and physiological bases for integrated control of the 12-h clock and diverse metabolic pathways remain unclear. Here, we show that steroid receptor coactivator SRC-3 coactivates XBP1 transcription and regulates hepatic 12-h cistrome and gene rhythmicity. Mice lacking SRC-3 show abnormal 12-h rhythms in hepatic transcription, metabolic functions, systemic energetics, and rate-limiting lipid metabolic processes, including triglyceride, phospholipid, and cardiolipin pathways. Notably, 12-h clock coactivation is not only preserved, with its cistromic activation priming ahead of the zeitgeber cue of light, but concomitant with rhythmic remodeling in the absence of food. These findings reveal that SRC-3 integrates the mammalian 12-h clock, energy metabolism, and membrane and lipid homeostasis and demonstrates a role for the 12-h clock machinery as an active transcriptional mechanism in anticipating physiological and metabolic energy needs and stresses.


Asunto(s)
Metabolismo de los Lípidos , Hígado , Animales , Metabolismo Energético/genética , Lípidos , Hígado/metabolismo , Mamíferos , Ratones
20.
Endocr Relat Cancer ; 28(10): 657-670, 2021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-34310341

RESUMEN

Steroid receptor coactivators (SRCs) possess specific and distinct oncogenic roles in the initiation of cancer and in its progression to a more aggressive disease. These coactivators interact with nuclear receptors and other transcription factors to boost transcription of multiple genes, which potentiate cancer cell proliferation, migration, invasion, tumor angiogenesis and epithelial-mesenchymal transition (EMT). Targeting SRCs using small molecule inhibitors (SMIs) is a promising approach to control cancer progression and metastasis. By high-throughput screening analysis, we recently identified SI-2 as a potent SRC SMI. To develop therapeutic agents, SI-10 and SI-12, the SI-2 analogs are synthesized that incorporate the addition of F atoms to the SI-2 chemical structure. As a result, these analogs exhibit a significantly prolonged plasma half-life, minimal toxicity and improved hERG activity. Biological functional analysis showed that SI-10 and SI-12 treatment (5-50 nM) can significantly inhibit viability, migration and invasion of breast cancer cells in vitro and repress the growth of breast cancer PDX organoids. Treatment of mice with 10 mg/kg/day of either SI-10 or SI-12 was sufficient to repress the growth of xenograft tumors derived from MDA-MB-231 and LM2 cells. Furthermore, in spontaneous and experimental metastasis mouse models developed from MDA-MB-231 and LM2 cells, respectively, SI-10 and SI-12 effectively inhibited the progression of breast cancer lung metastasis. These results demonstrate that SI-10 and SI-12 are promising therapeutic agents and are specifically effective in blocking tumor metastasis, a key point in tumor progression to a more lethal state that results in patient mortality in the majority of cases.


Asunto(s)
Neoplasias de la Mama , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Transición Epitelial-Mesenquimal , Femenino , Humanos , Ratones , Coactivador 3 de Receptor Nuclear/antagonistas & inhibidores , Oncogenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...