RESUMEN
Stable azaheterocyclic derivatives of pentalene have been reported by the group of Hafner in the 1970s. However, these structures remained of low interest until recently, when they started to be investigated in the context of organic light-emitting diodes' (OLEDs') development. Herein, we revisit the synthesis of stable azapentalene derivative 1,3-bis(dimethylamino)-2-azapentalene and further explore its properties both computationally and experimentally. Beyond the reproduction and optimization of some previously reported transformations, such as formylation and amine substitution, the available scope of reactions was expanded with azo-coupling, selective halogenations, and cross-coupling reactions.
RESUMEN
Monobenzopentalenes have received moderate attention compared to dibenzopentalenes, yet their accessibility as stable, non-symmetric structures with diverse substituents could be interesting for materials applications, including molecular photonics. Recently, monobenzopentalene was considered computationally as a potential chromophore for singlet fission (SF) photovoltaics. To advance this compound class towards photonics applications, the excited state energetics must be characterized, computationally and experimentally. In this report we synthesized a series of stable substituted monobenzopentalenes and provided the first experimental exploration of their photophysical properties. Structural and opto-electronic characterization revealed that all derivatives showed 1H NMR shifts in the olefinic region, bond length alternation in the pentalene unit, low-intensity absorptions reflecting the ground-state antiaromatic character and in turn the symmetry forbidden HOMO-to-LUMO transitions of ~2â eV and redox amphotericity. This was also supported by computed aromaticity indices (NICS, ACID, HOMA). Accordingly, substituents did not affect the fulfilment of the energetic criterion of SF, as the computed excited-state energy levels satisfied the required E(S1)/E(T1)>2 relationship. Further spectroscopic measurements revealed a concentration dependent quenching of the excited state and population of the S2 state on the nanosecond timescale, providing initial evidence for unusual photophysics and an alternative entry point for singlet fission with monobenzopentalenes.
RESUMEN
A hybrid molecular switch comprising salicylideneaniline (SA) and dithienylethene (DTE) moieties around a single benzene ring is reported. Due to an interplay between solvent-assisted enol-keto tautomerization in the former moiety and photochromic electrocyclization in the latter, this dithienylbenzene derivative was found to be photoresponsive at room temperature with a thermally stable closed form. The main photoproduct featuring ring-closed DTE and keto-enamine SA structures could be isolated and converted back to the starting material by irradiation with visible light. The optical properties of the potential structures involved in the overall process were characterized by using density functional theory (DFT) calculations in good agreement with the measured data. The reversibility of the conversion could be tuned by the presence of donor and acceptor substituents, while the introduction of the imine in the form of a benzothiazole moiety enabled photochemistry even in nonprotic solvents.
RESUMEN
A novel class of stable monoareno-pentalenes is introduced that have an olefinic proton on each five-membered ring of the pentalene subunit. Their synthesis was accomplished via a regioselective carbopalladation cascade reaction between ortho-arylacetyleno gem-dibromoolefins and TIPS-acetylene. These molecules could be experimental probes of magnetic (anti)aromaticity effects.
Asunto(s)
Alquenos , Protones , Estructura Molecular , AcetilenoRESUMEN
Morphologically different gold nanoparticle (AuNP) aggregates were prepared on macroscopic surfaces covered with a layer of polydopamine (PDA). The extent of particle aggregation and the particle size distribution could be controlled by the Au(III) reduction times, while the reduction process was triggered solely by the redox active polymer. Shorter reaction times led to smaller particles along with lower levels of aggregation, while longer reductions resulted in larger average particle diameter and heavier aggregation. The prepared surfaces were characterized by UV-Vis, AFM and KPFM techniques. These surfaces were used as solvent-free condensed phases to probe the photochemical and thermal isomerization processes of attached azobenzenes with different spacer lengths. Fast and reversible light-induced switching was observed in each case. The thermal cis-to-trans isomerization was found to be accelerated for particle-bound azobenzenes compared to those in solution.
Asunto(s)
Oro , Nanopartículas del Metal , Compuestos Azo/química , Oro/química , Isomerismo , Nanopartículas del Metal/químicaRESUMEN
Photoinduced tuning of (anti)aromaticity and associated molecular properties is currently in the focus of attention for both tailoring photochemical reactivity and designing new materials. Here, we report on the synthesis and spectroscopic characterization of diarylethene-based molecular switches embedded in a biphenylene structure composed of rings with different levels of local (anti)aromaticity. We show that it is possible to modulate and control the (anti)aromatic character of each ring through reversible photoswitching of the aryl units of the system between open and closed forms. Remarkably, it is shown that the irreversible formation of an annulated bis(dihydro-thiopyran) side-product that hampers the photoswitching can be efficiently suppressed when the aryl core formed by thienyl groups in one switch is replaced by thiazolyl groups in another.
Asunto(s)
Estructura MolecularRESUMEN
The synthesis and properties of a series of unsymmetrical thienopentalenes are explored, including both monoareno and diareno derivatives. For the synthesis of monoareno pentalenes, a carbopalladation cascade reaction between alkynes and gem-dibromoolefins was applied. Diareno pentalene derivatives were accessed via gold-catalyzed cyclization of diynes. Thiophene was fused to pentalene in two different geometries via its 2,3 and 3,4 bonds. 2,3-Fusion resulted in increased antiaromaticity of the pentalene unit compared to the 3,4-fusion both in the monoareno and diareno framework. Monothienopentalenes that contained the destabilizing 2,3-fusion could not be isolated. For diareno derivatives, the aromatic character of the different aryl groups fused to the pentalene was not independent. Destabilizing fusion on one side resulted in alleviated aromaticity on the other side and vice versa. The synthesized molecules were characterized experimentally by 1H NMR and UV-vis spectroscopies, cyclic voltammetry, and X-ray crystallography, and their aromatic character was assessed using magnetic (NICS and ACID) and electronic indices (MCI and FLU).
RESUMEN
The construction of a donor-acceptor Stenhouse adduct molecular layer on a gold surface is presented. To avoid the incompatibility of the thiol surface-binding group with the donor-acceptor polyene structure of the switch, an interfacial reaction approach was followed. Poly(dopamine)-supported gold nanoparticles on quartz slides were chosen as substrates, which was expected to facilitate both the interfacial reaction and the switching process by providing favorable steric conditions due to the curved particle surface. The reaction between the surface-bound donor half and the CF3-isoxazolone-based acceptor half was proved to be successful by X-ray photoelectron spectroscopy (XPS). However, UV-vis measurements suggested that a closed, cyclopentenone-containing structure of the switch formed on the surface irreversibly. Analysis of the wetting behavior of the surface revealed spontaneous water spreading that could be associated with conformational changes of the closed isomer.
RESUMEN
Herein, the design and synthesis of a click-derived Pd-complex merged with a photoswitchable azobenzene unit is presented. While in the trans-form of the switch the complex showed limited solubility, the photogenerated cis-form rendered the molecule soluble in polar solvents. This light-controllable solubility was exploited to affect the catalytic activity in the Suzuki coupling reaction. The effect of the substrate and catalyst concentration and light intensity on the proceeding and outcome of the reaction was studied. Dehalogenation of the aryl iodide starting material was found to be a major side reaction; however, its occurrence was dependent on the applied light intensity.
RESUMEN
The concepts of excited-state aromaticity and antiaromaticity have in recent years with increasing frequency been invoked to rationalize the photochemistry of cyclic conjugated organic compounds, with the long-term goal of using these concepts to improve the reactivities of such compounds toward different photochemical transformations. In this regard, it is of particular interest to assess how the presence of a benzene motif affects photochemical reactivity, as benzene is well-known to completely change its aromatic character in its lowest excited states. Here, we investigate how a benzene motif influences the photoinduced electrocyclization of dithienylethenes, a major class of molecular switches. Specifically, we report on the synthesis of a dithienylbenzene switch where the typical nonaromatic, ethene-like motif bridging the two thienyl units is replaced by a benzene motif, and show that this compound undergoes electrocyclization upon irradiation with UV-light. Furthermore, through a detailed quantum chemical analysis, we demonstrate that the electrocyclization is driven jointly and synergistically by the loss of aromaticity in this motif from the formation of a reactive, antiaromatic excited state during the initial photoexcitation, and by the subsequent relief of this antiaromaticity as the reaction progresses from the Franck-Condon region. Overall, we conclude that photoinduced changes in aromaticity facilitate the electrocyclization of dithienylbenzene switches.
RESUMEN
According to the currently accepted structure-property relationships, aceno-pentalenes with an angular shape (fused to the 1,2-bond of the acene) exhibit higher antiaromaticity than those with a linear shape (fused to the 2,3-bond of the acene). To explore and expand the current view, we designed and synthesized molecules where two isomeric, yet, different, 8π antiaromatic subunits, a benzocyclobutadiene (BCB) and a pentalene, are combined into, respectively, an angular and a linear topology via an unsaturated six-membered ring. The antiaromatic character of the molecules is supported experimentally by 1H NMR, UV-vis, and cyclic voltammetry measurements and X-ray crystallography. The experimental results are further confirmed by theoretical studies including the calculation of several aromaticity indices (NICS, ACID, HOMA, FLU, MCI). In the case of the angular molecule, double bond-localization within the connecting six-membered ring resulted in reduced antiaromaticity of both the BCB and pentalene subunits, while the linear structure provided a competitive situation for the two unequal [4n]π subunits. We found that in the latter case the BCB unit alleviated its unfavorable antiaromaticity more efficiently, leaving the pentalene with strong antiaromaticity. Thus, a reversed structure-antiaromaticity relationship when compared to aceno-pentalenes was achieved.
RESUMEN
The facile preparation of dynamic interfaces is presented based on the combination of photoisomerizable azobenzenes and polydopamine (PDA)/Au nanoparticle composite materials. Azobenzenes with different spacer lengths (C3 , C6 ) and surface-binding groups (SH, NH2 ) were synthesized. The polymer layer on macroscopic quartz surface was prepared by the facile aerobic autopolymerisation of dopamine hydrochloride under basic conditions. The presence of redox-active catechol moieties meant that gold nanoparticles were formed on the polymer surface. The obtained UV-Vis spectroscopic results confirmed that following their successful assembly, the switching of azobenzenes on PDA/Au was not affected by the surface binding group and the spacer length of the azobenzene molecules under the measurement conditions. Furthermore, facilitated by the curved nature of the Au particles, the surface-bound azobenzene layer could be reconstructed by ligand-exchange processes, and the photochemical characterization of the mixed layer was performed.
Asunto(s)
Compuestos Azo/química , Oro/química , Indoles/química , Luz , Nanopartículas/química , Polímeros/química , Isomerismo , Ligandos , Espectrofotometría , Propiedades de SuperficieRESUMEN
Designing artificial molecular machines to execute complex mechanical tasks, like coupling rotation and translation to accomplish transmission of motion, continues to provide important challenges. Herein, we demonstrated a novel molecular machine comprising a second-generation light-driven molecular motor and a bistable [1]rotaxane unit. The molecular motor can rotate successfully even in an interlocked [1]rotaxane system through a photoinduced cis-to -trans isomerization and a thermal helix inversion, resulting in concomitant transitional motion of the [1]rotaxane. The transmission process was elucidated via 1H NMR, 1H-1H COSY, HMQC, HMBC, and 2D ROESY NMR spectroscopies, UV-visible absorption spectrum, and density functional theory calculations. This is the first demonstration of a molecular motor to rotate against the appreciably noncovalent interactions between dibenzo-24-crown-8 and N-methyltriazolium moieties comprising the rotaxane unit, showing operational capabilities of molecular motors to perform more complex tasks.
RESUMEN
The effect of catalyst restructuring on the polydopamine-supported Pd catalyzed transfer hydrogenation of ethyl 4-nitrobenzoate and the catalytic hydrogenation of (E)-2-methyl-2-butenoic acid is reported. Transmission electron microscopy investigation of different catalyst pre-treatment and reaction conditions revealed high catalytic activity in both reactions unless drastic aggregation of the active metal occurred. In the transfer hydrogenation reaction aggregation was primarily dependent on the H-source used, while in the catalytic hydrogenation additives in combination with the reductive environment led to extensive Pd aggregation and thus decreased catalytic activity. The enantioselective hydrogenation of (E)-2-methyl-2-butenoic acid showed increased enantioselectivity and decreased conversion with increased particle size.
RESUMEN
An acid/base responsive amphiphilic [2]rotaxane switch containing a hydrophilic macrocycle component and a hydrophobic terminal bulky group was prepared and characterized. The morphology of the supramolecular assemblies formed by the rotaxanes could be switched between spherical vesicles and worm-like micelles using acid/base stimuli, as confirmed by transmission electron microscopy (TEM).
RESUMEN
Three series of stable, neutral, π-extended bispentalene derivatives, with two pentalenes fused to a central benzene or naphthalene moiety, have been prepared through a modified double carbopalladation cascade reaction. While these chromophores feature skeletons with [4n+2] π-electron perimeters, the two 8 π-electron pentalene subunits strongly influence bonding and spectral properties. (1)H NMR spectra showed large upfield shifts of the protons in the pentalene moieties, comparable to antiaromatic monobenzopentalenes. Further investigations on magnetic ring currents through NICS-XY-scans suggest a global paratropic current and a local diatropic current at the central benzene ring in two of the series, while the third series, with a central naphthalene ring, showed more localized ring currents, with stronger paratropic ring currents on the pentalene moieties. X-ray diffraction analyses revealed planar bispentalene cores with large double- and single-bond alternation in the pentalene units, characteristic for antiaromaticity, and small alternation in the central aromatic rings. In agreement with TD-DFT calculations, both optical and electrochemical data showed much smaller HOMO-LUMO energy gaps compared to other neutral, acene-like hydrocarbons with the same number of fused rings. Both experimental and computational results suggest that the molecular properties of the presented bispentalenes are dominated by the antiaromatic pentalene-subunits despite the [4n+2] π-electron perimeter of the skeletons.
RESUMEN
The design, synthesis, and dynamic behavior of a series of novel tetrapodal molecular switches and motors containing common functional groups for attachment to various inorganic and organic surfaces are presented. Using a Diels-Alder reaction, an anthracene unit with four functionalized alkyl substituents ("legs") was coupled to maleimide-functionalized molecular switches or motors under ambient conditions. Terminal functional groups at the "legs" include thioacetates and azides, making these switches and motors ideal candidates for attachment to metallic or alkyne-functionalized surfaces. UV/vis absorption spectroscopy shows that the molecular switches and motors retain their ability to undergo reversible photoinduced and/or thermally induced structural changes after attachment to the tetrapodal anthracene.
RESUMEN
Monolayers of fluorinated light-driven molecular motors were synthesized and immobilized on gold films in an altitudinal orientation via tripodal stators. In this design the functionalized molecular motors are not interfering and preserve their rotary function on gold. The wettability of the self-assembled monolayers can be modulated by UV irradiation.
RESUMEN
We report the synthesis of altitudinal molecular motors that contain functional groups in their rotor part. In an approach to achieve dynamic control over the properties of solid surfaces, a hydrophobic perfluorobutyl chain and a relatively hydrophilic cyano group were introduced to the rotor part of the motors. Molecular motors were attached to quartz surfaces by using interfacial 1,3-dipolar cycloadditions. To test the effect of the functional groups on the rotary motion, photochemical and thermal isomerization studies of the motors were performed both in solution and when attached to the surface. We found that the substituents have no significant effect on the thermal and photochemical processes, and the functionalized motors preserved their rotary function both in solution and on a quartz surface. Preliminary results on the influence of the functional groups on surface wettability are also described.
RESUMEN
The attachment of molecular rotary motors containing triethoxysilane functional groups to quartz, silicon and mica surfaces is described. Motors containing silane coupling agents in their structure form stable molecular layers on quartz and silicon surfaces. Motors attached to these surfaces were found to undergo photochemical and thermal isomerization steps similar to those observed in solution. Additionally, successful formation of molecular "carpets" on atomically flat mica extending micrometer-sized length scales is presented. These "carpets" were found to undergo morphological changes upon irradiation with UV-light.