Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Neural Regen Res ; 20(3): 779-793, 2025 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38886942

RESUMEN

Mononuclear macrophage infiltration in the central nervous system is a prominent feature of neuroinflammation. Recent studies on the pathogenesis and progression of multiple sclerosis have highlighted the multiple roles of mononuclear macrophages in the neuroinflammatory process. Monocytes play a significant role in neuroinflammation, and managing neuroinflammation by manipulating peripheral monocytes stands out as an effective strategy for the treatment of multiple sclerosis, leading to improved patient outcomes. This review outlines the steps involved in the entry of myeloid monocytes into the central nervous system that are targets for effective intervention: the activation of bone marrow hematopoiesis, migration of monocytes in the blood, and penetration of the blood-brain barrier by monocytes. Finally, we summarize the different monocyte subpopulations and their effects on the central nervous system based on phenotypic differences. As activated microglia resemble monocyte-derived macrophages, it is important to accurately identify the role of monocyte-derived macrophages in disease. Depending on the roles played by monocyte-derived macrophages at different stages of the disease, several of these processes can be interrupted to limit neuroinflammation and improve patient prognosis. Here, we discuss possible strategies to target monocytes in neurological diseases, focusing on three key aspects of monocyte infiltration into the central nervous system, to provide new ideas for the treatment of neurodegenerative diseases.

2.
Lipids Health Dis ; 23(1): 359, 2024 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-39497194

RESUMEN

BACKGROUND: Metabolic disruptions were observed in patients with optic neurodegenerative diseases (OND). However, evidence for the causal association between metabolites and OND is limited. METHODS: Two-sample Mendelian randomization (MR). Summary data for 128 blood metabolites was selected from three genome-wide association study (GWASs) involving 147,827 participants of European descent. GWASs Data for glaucoma (20906 cases and 391275 controls) and age-related macular degeneration (AMD, 9721 cases and 381339 controls) came from FinnGen consortium. A bi-directional MR was conducted to assess causality, and a Mediation MR was further applied to explore the indirect effect, a phenome-wide MR analysis was then performed to identify possible side-effects of the therapies. RESULTS: All the results underwent correction for multiple testing and rigorous sensitivity analyses. We identified N-acetyl glycine, serine, uridine were linked to an elevated risk of glaucoma. 1-arachidonic-glycerol-phosphate-ethanolamine, 4-acetamido butanoate, o-methylascorbate, saturated fatty acids, monounsaturated fatty acids, VLDL cholesterol, serum total cholesterol, X-11,529 were linked to reduced risk of glaucoma. There were 4 metabolites linked to a reduced risk of AMD, including tryptophan betaine, 4-androsten-3beta-17beta-diol disulfate, apolipoprotein B, VLDL cholesterol. We discovered IOP, AS, T2D as glaucoma risk factors, while BMI, AS, GCIPL as AMD factors. And 6 metabolites showed associations with risk factors in the same direction as their associations with glaucoma/AMD. Phenome-wide MR indicated that selected metabolites had protective/adverse effects on other diseases. CONCLUSIONS: By integrating genomics and metabolomics, this study supports new insights into the intricate mechanisms, and helps prevent and screen glaucoma and AMD.


Asunto(s)
Estudio de Asociación del Genoma Completo , Glaucoma , Degeneración Macular , Análisis de la Aleatorización Mendeliana , Metaboloma , Humanos , Degeneración Macular/sangre , Degeneración Macular/genética , Metaboloma/genética , Glaucoma/genética , Glaucoma/sangre , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/sangre , Polimorfismo de Nucleótido Simple , Masculino , Femenino
3.
CNS Neurosci Ther ; 30(4): e14721, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38644578

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disorder distinguished by a swift cognitive deterioration accompanied by distinctive pathological hallmarks such as extracellular Aß (ß-amyloid) peptides, neuronal neurofibrillary tangles (NFTs), sustained neuroinflammation, and synaptic degeneration. The elevated frequency of AD cases and its proclivity to manifest at a younger age present a pressing challenge in the quest for novel therapeutic interventions. Numerous investigations have substantiated the involvement of C/EBPß in the progression of AD pathology, thus indicating its potential as a therapeutic target for AD treatment. AIMS: Several studies have demonstrated an elevation in the expression level of C/EBPß among individuals afflicted with AD. Consequently, this review predominantly delves into the association between C/EBPß expression and the pathological progression of Alzheimer's disease, elucidating its underlying molecular mechanism, and pointing out the possibility that C/EBPß can be a new therapeutic target for AD. METHODS: A systematic literature search was performed across multiple databases, including PubMed, Google Scholar, and so on, utilizing predetermined keywords and MeSH terms, without temporal constraints. The inclusion criteria encompassed diverse study designs, such as experimental, case-control, and cohort studies, restricted to publications in the English language, while conference abstracts and unpublished sources were excluded. RESULTS: Overexpression of C/EBPß exacerbates the pathological features of AD, primarily by promoting neuroinflammation and mediating the transcriptional regulation of key molecular pathways, including δ-secretase, apolipoprotein E4 (APOE4), acidic leucine-rich nuclear phosphoprotein-32A (ANP32A), transient receptor potential channel 1 (TRPC1), and Forkhead BoxO (FOXO). DISCUSSION: The correlation between overexpression of C/EBPß and the pathological development of AD, along with its molecular mechanisms, is evident. Investigating the pathways through which C/EBPß regulates the development of AD reveals numerous multiple vicious cycle pathways exacerbating the pathological progression of the disease. Furthermore, the exacerbation of pathological progression due to C/EBPß overexpression and its molecular mechanism is not limited to AD but also extends to other neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), and multiple sclerosis (MS). CONCLUSION: The overexpression of C/EBPß accelerates the irreversible progression of AD pathophysiology. Additionally, C/EBPß plays a crucial role in mediating multiple pathways linked to AD pathology, some of which engender vicious cycles, leading to the establishment of feedback mechanisms. To sum up, targeting C/EBPß could hold promise as a therapeutic strategy not only for AD but also for other degenerative diseases.


Asunto(s)
Enfermedad de Alzheimer , Proteína beta Potenciadora de Unión a CCAAT , Progresión de la Enfermedad , Humanos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Proteína beta Potenciadora de Unión a CCAAT/genética , Animales , Péptidos beta-Amiloides/metabolismo
4.
Front Endocrinol (Lausanne) ; 14: 1332712, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38274231

RESUMEN

Background: Delirium significantly contributes to both mortality and morbidity among hospitalized older adults. Furthermore, delirium leads to escalated healthcare expenditures, extended hospital stays, and enduring cognitive deterioration, all of which are acknowledged detrimental outcomes. Nonetheless, the current strategies for predicting and managing delirium remain constrained. Our aim was to employ Mendelian randomization (MR) to investigate the potential causal relationship between metabolites and delirium, as well as to identify potential therapeutic targets. Methods: We identified 129 distinct blood metabolites from three genome-wide association studies (GWASs) conducted on the metabolome, involving a total of 147,827 participants of European descent. Genetic information pertaining to delirium was sourced from the ninth iteration of the Finngen Biobank, encompassing 359,699 individuals of Finnish ancestry. We conducted MR analyses to evaluate the connections between blood metabolites and delirium. Additionally, we extended our analysis to encompass the entire phenome using MR, aiming to uncover potential on-target consequences resulting from metabolite interventions. Results: In our investigation, we discovered three metabolites serving as causal mediators in the context of delirium: clinical low density lipoprotein cholesterol (LDL-C) (odds ratio [OR]: 1.47, 95% confidence interval [CI]: 1.25-1.73, p = 3.92 x 10-6), sphingomyelin (OR: 1.47, 95% CI: 1.25-1.74, p = 5.97 x 10-6), and X-11593-O-methylascorbate (OR: 0.21, 95% CI: 0.10-0.43, p = 1.86 x 10-5). Furthermore, utilizing phenome-wide MR analysis, we discerned that clinical LDL-C, sphingomyelin, and O-methylascorbate not only mediate delirium susceptibility but also impact the risk of diverse ailments. Limitations: (1) Limited representation of the complete blood metabolome, (2) reliance on the PheCode system based on hospital diagnoses may underrepresent conditions with infrequent hospital admissions, and (3) limited to European ancestry. Conclusion: The genetic prediction of heightened O-methylascorbate levels seems to correspond to a diminished risk of delirium, in contrast to the association of elevated clinical LDL-C and sphingomyelin levels with an amplified risk. A comprehensive analysis of side-effect profiles has been undertaken to facilitate the prioritization of drug targets. Notably, O-methylascorbate emerges as a potentially auspicious target for mitigating and treating delirium, offering the advantage of lacking predicted adverse side effects.


Asunto(s)
Delirio , Análisis de la Aleatorización Mendeliana , Humanos , Anciano , LDL-Colesterol , Factores de Riesgo , Análisis de la Aleatorización Mendeliana/métodos , Estudio de Asociación del Genoma Completo/métodos , Esfingomielinas , Delirio/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...