Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Metab ; 5(4): 642-659, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37012496

RESUMEN

Cancer cells fuel their increased need for nucleotide supply by upregulating one-carbon (1C) metabolism, including the enzymes methylenetetrahydrofolate dehydrogenase-cyclohydrolase 1 and 2 (MTHFD1 and MTHFD2). TH9619 is a potent inhibitor of dehydrogenase and cyclohydrolase activities in both MTHFD1 and MTHFD2, and selectively kills cancer cells. Here, we reveal that, in cells, TH9619 targets nuclear MTHFD2 but does not inhibit mitochondrial MTHFD2. Hence, overflow of formate from mitochondria continues in the presence of TH9619. TH9619 inhibits the activity of MTHFD1 occurring downstream of mitochondrial formate release, leading to the accumulation of 10-formyl-tetrahydrofolate, which we term a 'folate trap'. This results in thymidylate depletion and death of MTHFD2-expressing cancer cells. This previously uncharacterized folate trapping mechanism is exacerbated by physiological hypoxanthine levels that block the de novo purine synthesis pathway, and additionally prevent 10-formyl-tetrahydrofolate consumption for purine synthesis. The folate trapping mechanism described here for TH9619 differs from other MTHFD1/2 inhibitors and antifolates. Thus, our findings uncover an approach to attack cancer and reveal a regulatory mechanism in 1C metabolism.


Asunto(s)
Metilenotetrahidrofolato Deshidrogenasa (NADP) , Neoplasias , Metilenotetrahidrofolato Deshidrogenasa (NADP)/genética , Metilenotetrahidrofolato Deshidrogenasa (NADP)/metabolismo , Ácido Fólico/metabolismo , Formiatos , Purinas , Tetrahidrofolatos
2.
Autophagy ; 19(2): 724-725, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35939345

RESUMEN

Mitophagy neutralizes defective mitochondria via lysosomal elimination. Increased levels of mitophagy hallmark metabolic transitions and are induced by iron depletion, yet its metabolic basis has not been studied in-depth. How mitophagy integrates with different homeostatic mechanisms to support metabolic integrity is incompletely understood. We examined metabolic adaptations in cells treated with deferiprone (DFP), a therapeutic iron chelator known to induce PINK1-PRKN-independent mitophagy. We found that iron depletion profoundly rewired the cellular metabolome, remodeling lipid metabolism within minutes of treatment. DGAT1-dependent lipid droplet biosynthesis occurs upstream of mitochondrial turnover, with many LDs bordering mitochondria upon iron chelation. Surprisingly, DGAT1 inhibition restricts mitophagy in vitro by lysosomal dysfunction. Genetic depletion of mdy/DGAT1 in vivo impairs neuronal mitophagy and locomotor function in Drosophila, demonstrating the physiological relevance of our findings.


Asunto(s)
Proteínas de Drosophila , Mitofagia , Animales , Mitofagia/genética , Proteínas Quinasas/metabolismo , Gotas Lipídicas/metabolismo , Autofagia , Ubiquitina-Proteína Ligasas/metabolismo , Drosophila/metabolismo , Hierro , Proteínas Serina-Treonina Quinasas , Proteínas de Drosophila/metabolismo
3.
EMBO J ; 41(10): e109390, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35411952

RESUMEN

Mitophagy removes defective mitochondria via lysosomal elimination. Increased mitophagy coincides with metabolic reprogramming, yet it remains unknown whether mitophagy is a cause or consequence of such state changes. The signalling pathways that integrate with mitophagy to sustain cell and tissue integrity also remain poorly defined. We performed temporal metabolomics on mammalian cells treated with deferiprone, a therapeutic iron chelator that stimulates PINK1/PARKIN-independent mitophagy. Iron depletion profoundly rewired the metabolome, hallmarked by remodelling of lipid metabolism within minutes of treatment. DGAT1-dependent lipid droplet biosynthesis occurred several hours before mitochondrial clearance, with lipid droplets bordering mitochondria upon iron chelation. We demonstrate that DGAT1 inhibition restricts mitophagy in vitro, with impaired lysosomal homeostasis and cell viability. Importantly, genetic depletion of DGAT1 in vivo significantly impaired neuronal mitophagy and locomotor function in Drosophila. Our data define iron depletion as a potent signal that rapidly reshapes metabolism and establishes an unexpected synergy between lipid homeostasis and mitophagy that safeguards cell and tissue integrity.


Asunto(s)
Hierro , Mitofagia , Animales , Hierro/metabolismo , Lisosomas/metabolismo , Mamíferos , Mitocondrias/metabolismo , Proteínas Quinasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
4.
J Immunother Cancer ; 9(8)2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34362830

RESUMEN

BACKGROUND: Despite the success of immune checkpoint inhibitors against PD-L1 in the clinic, only a fraction of patients benefit from such therapy. A theoretical strategy to increase efficacy would be to arm such antibodies with Fc-mediated effector mechanisms. However, these effector mechanisms are inhibited or reduced due to toxicity issues since PD-L1 is not confined to the tumor and also expressed on healthy cells. To increase efficacy while minimizing toxicity, we designed an oncolytic adenovirus that secretes a cross-hybrid Fc-fusion peptide against PD-L1 able to elicit effector mechanisms of an IgG1 and also IgA1 consequently activating neutrophils, a population neglected by IgG1, in order to combine multiple effector mechanisms. METHODS: The cross-hybrid Fc-fusion peptide comprises of an Fc with the constant domains of an IgA1 and IgG1 which is connected to a PD-1 ectodomain via a GGGS linker and was cloned into an oncolytic adenovirus. We demonstrated that the oncolytic adenovirus was able to secrete the cross-hybrid Fc-fusion peptide able to bind to PD-L1 and activate multiple immune components enhancing tumor cytotoxicity in various cancer cell lines, in vivo and ex vivo renal-cell carcinoma patient-derived organoids. RESULTS: Using various techniques to measure cytotoxicity, the cross-hybrid Fc-fusion peptide expressed by the oncolytic adenovirus was shown to activate Fc-effector mechanisms of an IgA1 (neutrophil activation) as well as of an IgG1 (natural killer and complement activation). The activation of multiple effector mechanism simultaneously led to significantly increased tumor killing compared with FDA-approved PD-L1 checkpoint inhibitor (Atezolizumab), IgG1-PDL1 and IgA-PDL1 in various in vitro cell lines, in vivo models and ex vivo renal cell carcinoma organoids. Moreover, in vivo data demonstrated that Ad-Cab did not require CD8+ T cells, unlike conventional checkpoint inhibitors, since it was able to activate other effector populations. CONCLUSION: Arming PD-L1 checkpoint inhibitors with Fc-effector mechanisms of both an IgA1 and an IgG1 can increase efficacy while maintaining safety by limiting expression to the tumor using oncolytic adenovirus. The increase in tumor killing is mostly attributed to the activation of multiple effector populations rather than activating a single effector population leading to significantly higher tumor killing.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico/administración & dosificación , Inmunoterapia/métodos , Neoplasias/terapia , Viroterapia Oncolítica/métodos , Adenoviridae/genética , Adenoviridae/inmunología , Animales , Línea Celular Tumoral , Femenino , Humanos , Inhibidores de Puntos de Control Inmunológico/inmunología , Inmunoglobulina A/administración & dosificación , Inmunoglobulina A/genética , Inmunoglobulina A/inmunología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Neoplasias/inmunología , Neoplasias/virología , Virus Oncolíticos/genética , Virus Oncolíticos/inmunología , Organoides , Receptores Fc/administración & dosificación , Receptores Fc/genética , Receptores Fc/inmunología
5.
Cells ; 9(5)2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32354068

RESUMEN

In the endomembrane system of mammalian cells, membrane traffic processes require a high degree of regulation in order to ensure their specificity. The range of molecules that participate in trafficking events is truly vast, and much attention to date has been given to the Rab family of small GTPases. However, in recent years, a role in membrane traffic for members of the Rho GTPase family, in particular Cdc42, has emerged. This prompted us to develop and apply an image-based high-content screen, initially focussing on the Golgi complex, using RNA interference to systematically perturb each of the 21 Rho family members and assess their importance to the overall organisation of this organelle. Analysis of our data revealed previously unreported roles for two atypical Rho family members, RhoBTB1 and RhoBTB3, in membrane traffic events. We find that depletion of RhoBTB3 affects the morphology of the Golgi complex and causes changes in the trafficking speeds of carriers operating at the interface of the Golgi and endoplasmic reticulum. In addition, RhoBTB3 was found to be present on these carriers. Depletion of RhoBTB1 was also found to cause a disturbance to the Golgi architecture, however, this phenotype seems to be linked to endocytosis and retrograde traffic pathways. RhoBTB1 was found to be associated with early endosomal intermediates, and changes in the levels of RhoBTB1 not only caused profound changes to the organisation and distribution of endosomes and lysosomes, but also resulted in defects in the delivery of two different classes of cargo molecules to downstream compartments. Together, our data reveal new roles for these atypical Rho family members in the endomembrane system.


Asunto(s)
Interferencia de ARN , Proteínas de Unión al GTP rho/metabolismo , Línea Celular Tumoral , Movimiento Celular/fisiología , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Células HeLa , Humanos , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Transporte de Proteínas , Proteínas de Unión al GTP rho/genética
6.
Semin Cancer Biol ; 66: 12-21, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-31319163

RESUMEN

Autophagy refers to an essential mechanism that evolved to sustain eukaryotic homeostasis and metabolism during instances of nutrient deprivation. During autophagy, intracellular cargo is encapsulated and delivered to the lysosome for elimination. Loss of basal autophagy in vivo negatively impacts cellular proteostasis, metabolism and tissue integrity. Accordingly, many drug development strategies are focused on modulating autophagic capacity in various pathophysiological states, from cancer to neurodegenerative disease. The role of autophagy in cancer is particularly complicated, as either augmenting or attenuating this process can have variable outcomes on cellular survival, proliferation and transformation. This complexity is compounded by the emergence of several selective autophagy pathways, which act to eliminate damaged or superfluous cellular components in a targeted fashion. The advent of sensitive tools to monitor autophagy pathways in vivo holds promise to clarify their importance in cancer pathophysiology. In this review, we provide an overview of autophagy in cancer biology and outline how the development of tools to study autophagy in vivo could enhance our understanding of its function for translational benefit.


Asunto(s)
Autofagia/fisiología , Neoplasias/patología , Animales , Homeostasis/fisiología , Humanos , Enfermedades Neurodegenerativas/patología , Proteostasis/fisiología
7.
Tissue Cell ; 49(2 Pt A): 163-169, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27720426

RESUMEN

The Golgi complex is the central unit of the secretory pathway, modifying, processing and sorting proteins and lipids to their correct cellular localisation. Changes to proteins at the Golgi complex can have deleterious effects on the function of this organelle, impeding trafficking routes through it, potentially resulting in disease. It is emerging that several Rho GTPase proteins, namely Cdc42, RhoBTB3, RhoA and RhoD are at least in part localised to the Golgi complex, and a number of studies have shown that dysregulation of their levels or activity can be associated with cellular changes which ultimately drive cancer progression. In this mini-review we highlight some of the recent work that explores links between form and function of the Golgi complex, Rho GTPases and cancer.


Asunto(s)
Aparato de Golgi/genética , Neoplasias/genética , Proteínas de Unión al GTP rho/genética , Aparato de Golgi/metabolismo , Aparato de Golgi/patología , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Transporte de Proteínas/genética , Proteína de Unión al GTP cdc42/genética , Proteínas de Unión al GTP rho/metabolismo , Proteína de Unión al GTP rhoA/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...