Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Plant Physiol Biochem ; 210: 108637, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38670031

RESUMEN

The MADS-box gene family is a transcription factor family that is widely expressed in plants. It controls secondary metabolic processes in plants and encourages the development of tissues like roots and flowers. However, the phylogenetic analysis and evolutionary model of MADS-box genes in Fagopyrum species has not been reported yet. This study identified the MADS-box genes of three buckwheat species at the whole genome level, and conducted systematic evolution and physicochemical analysis. The results showed that these genes can be divided into four subfamilies, with fragment duplication being the main way for the gene family expansion. During the domestication process from golden buckwheat to tartary buckwheat and the common buckwheat, the Ka/Ks ratio indicated that most members of the family experienced strong purification selection pressure, and with individual gene pairs experiencing positive selection. In addition, we combined the expression profile data of the MADS genes, mGWAS data, and WGCNA data to mine genes FdMADS28/48/50 that may be related to flavonoid metabolism. The results also showed that overexpression of FdMADS28 could increase rutin content by decreasing Kaempferol pathway content in hairy roots, and increase the resistance and growth of hairy roots to PEG and NaCl. This study systematically analyzed the evolutionary relationship of MADS-box genes in the buckwheat species, and elaborated on the expression patterns of MADS genes in different tissues under biotic and abiotic stresses, laying an important theoretical foundation for further elucidating their role in flavonoid metabolism.


Asunto(s)
Evolución Molecular , Fagopyrum , Flavonoides , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS , Filogenia , Proteínas de Plantas , Fagopyrum/genética , Fagopyrum/metabolismo , Flavonoides/metabolismo , Flavonoides/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Genes de Plantas
2.
Plant Cell ; 35(8): 2773-2798, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37119263

RESUMEN

Rhizoctonia solani is a devastating soil-borne pathogen that seriously threatens the cultivation of economically important crops. Multiple strains with a very broad host range have been identified, but only 1 (AG1-IA, which causes rice sheath blight disease) has been examined in detail. Here, we analyzed AG4-HGI 3 originally isolated from Tartary buckwheat (Fagopyrum tataricum), but with a host range comparable to AG1-IA. Genome comparison reveals abundant pathogenicity genes in this strain. We used multiomic approaches to improve the efficiency of screening for disease resistance genes. Transcriptomes of the plant-fungi interaction identified differentially expressed genes associated with virulence in Rhizoctonia and resistance in Tartary buckwheat. Integration with jasmonate-mediated transcriptome and metabolome changes revealed a negative regulator of jasmonate signaling, cytochrome P450 (FtCYP94C1), as increasing disease resistance probably via accumulation of resistance-related flavonoids. The integration of resistance data for 320 Tartary buckwheat accessions identified a gene homolog to aspartic proteinase (FtASP), with peak expression following R. solani inoculation. FtASP exhibits no proteinase activity but functions as an antibacterial peptide that slows fungal growth. This work reveals a potential mechanism behind pathogen virulence and host resistance, which should accelerate the molecular breeding of resistant varieties in economically essential crops.


Asunto(s)
Fagopyrum , Fagopyrum/genética , Perfilación de la Expresión Génica , Virulencia/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Rhizoctonia/genética , Rhizoctonia/metabolismo , Resistencia a la Enfermedad/genética , Multiómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA