Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 7(1): 596, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762629

RESUMEN

Apicomplexan parasites harbor a complex endomembrane system as well as unique secretory organelles. These complex cellular structures require an elaborate vesicle trafficking system, which includes Rab GTPases and their regulators, to assure the biogenesis and secretory of the organelles. Here we exploit the model apicomplexan organism Toxoplasma gondii that encodes a family of Rab GTPase Activating Proteins, TBC (Tre-2/Bub2/Cdc16) domain-containing proteins. Functional profiling of these proteins in tachyzoites reveals that TBC9 is the only essential regulator, which is localized to the endoplasmic reticulum (ER) in T. gondii strains. Detailed analyses demonstrate that TBC9 is required for normal distribution of proteins targeting to the ER, and the Golgi apparatus in the parasite, as well as for the normal formation of daughter inner membrane complexes (IMCs). Pull-down assays show a strong protein interaction between TBC9 and specific Rab GTPases (Rab11A, Rab11B, and Rab2), supporting the role of TBC9 in daughter IMC formation and early vesicular transport. Thus, this study identifies the only essential TBC domain-containing protein TBC9 that regulates early vesicular transport and IMC formation in T. gondii and potentially in closely related protists.


Asunto(s)
Retículo Endoplásmico , Proteínas Activadoras de GTPasa , Proteínas Protozoarias , Toxoplasma , Proteínas de Unión al GTP rab , Toxoplasma/metabolismo , Toxoplasma/genética , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Retículo Endoplásmico/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab/genética , Proteínas Activadoras de GTPasa/metabolismo , Proteínas Activadoras de GTPasa/genética , Aparato de Golgi/metabolismo , Transporte de Proteínas , Animales , Vesículas Transportadoras/metabolismo
2.
Trends Parasitol ; 40(5): 416-426, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38637184

RESUMEN

The micropore, a mysterious structure found in apicomplexan species, was recently shown to be essential for nutrient acquisition in Plasmodium falciparum and Toxoplasma gondii. However, the differences between the micropores of these two parasites questions the nature of a general apicomplexan micropore structure and whether the formation process model from Plasmodium can be applied to other apicomplexans. We analyzed the literature on different apicomplexan micropores and found that T. gondii probably harbors a more representative micropore type than the more widely studied ones in Plasmodium. Using recent knowledge of the Kelch 13 (K13) protein interactome and gene depletion phenotypes in the T. gondii micropore, we propose a model of micropore formation, thus enriching our wider understanding of micropore protein function.


Asunto(s)
Apicomplexa , Plasmodium falciparum , Toxoplasma , Apicomplexa/fisiología , Apicomplexa/genética , Toxoplasma/genética , Toxoplasma/fisiología , Plasmodium falciparum/fisiología , Plasmodium falciparum/genética , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética
3.
Parasit Vectors ; 17(1): 142, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38500196

RESUMEN

BACKGROUND: The protozoan parasite Toxoplasma gondii encodes dozens of phosphatases, among which a plant-like phosphatase absent from mammalian genomes named PPKL, which is involved in regulating brassinosteroid signaling in Arabidopsis, was identified in the genome. Among the Apicomplexa parasites, T. gondii is an important and representative pathogen in humans and animals. PPKL was previously identified to modulate the apical integrity and morphology of the ookinetes and parasite motility and transmission in another important parasite, Plasmodium falciparum. However, the exact function of PPKL in the asexual stages of T. gondii remains unknown. METHODS: The plant auxin-inducible degron (AID) system was applied to dissect the phenotypes of PPKL in T. gondii. We first analyzed the phenotypes of the AID parasites at an induction time of 24 h, by staining of different organelles using their corresponding markers. These analyses were further conducted for the parasites grown in auxin for 6 and 12 h using a quantitative approach and for the type II strain ME49 of AID parasites. To further understand the phenotypes, the potential protein interactions were analyzed using a proximity biotin labeling approach. The essential role of PPKL in parasite replication was revealed. RESULTS: PPKL is localized in the apical region and nucleus and partially distributed in the cytoplasm of the parasite. The phenotyping of PPKL showed its essentiality for parasite replication and morphology. Further dissections demonstrate that PPKL is required for the maturation of daughter parasites in the mother cells, resulting in multiple nuclei in a single parasite. The phenotype of the daughter parasites and parasite morphology were observed in another type of T. gondii strain ME49. The substantial defect in parasite replication and morphology could be rescued by genetic complementation, thus supporting its essential function for PPKL in the formation of parasites. The protein interaction analysis showed the potential interaction of PPKL with diverse proteins, thus explaining the importance of PPKL in the parasite. CONCLUSIONS: PPKL plays an important role in the formation of daughter parasites, revealing its subtle involvement in the proper maturation of the daughter parasites during division. Our detailed analysis also demonstrated that depletion of PPKL resulted in elongated tubulin fibers in the parasites. The important roles in the parasites are potentially attributed to the protein interaction mediated by kelch domains on the protein. Taken together, these findings contribute to our understanding of a key phosphatase involved in parasite replication, suggesting the potential of this phosphatase as a pharmaceutic target.


Asunto(s)
Parásitos , Toxoplasma , Humanos , Animales , Toxoplasma/fisiología , Proteínas de Plantas/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Ácidos Indolacéticos/metabolismo , Mamíferos
4.
Elife ; 122024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38502570

RESUMEN

The apicoplast is a four-membrane plastid found in the apicomplexans, which harbors biosynthesis and organelle housekeeping activities in the matrix. However, the mechanism driving the flux of metabolites, in and out, remains unknown. Here, we used TurboID and genome engineering to identify apicoplast transporters in Toxoplasma gondii. Among the many novel transporters, we show that one pair of apicomplexan monocarboxylate transporters (AMTs) appears to have evolved from a putative host cell that engulfed a red alga. Protein depletion showed that AMT1 and AMT2 are critical for parasite growth. Metabolite analyses supported the notion that AMT1 and AMT2 are associated with biosynthesis of isoprenoids and fatty acids. However, stronger phenotypic defects were observed for AMT2, including in the inability to establish T. gondii parasite virulence in mice. This study clarifies, significantly, the mystery of apicoplast transporter composition and reveals the importance of the pair of AMTs in maintaining the apicoplast activity in apicomplexans.


Asunto(s)
Apicoplastos , Parásitos , Toxoplasma , Animales , Ratones , Toxoplasma/metabolismo , Parásitos/metabolismo , Apicoplastos/metabolismo , Ácidos Grasos/metabolismo , Compuestos Orgánicos/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
5.
Parasit Vectors ; 16(1): 409, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37941035

RESUMEN

BACKGROUND: The protozoan parasite Toxoplasma gondii encodes a dozen Rab proteins, which are parts of the small GTPase superfamily and regulate intracellular membrane trafficking. Our previous study showed that depletion of Rab1B caused severe defects regarding parasite growth and morphological structure, yet early defects of endocytic trafficking and vesicle sorting to the rhoptry in T. gondii are not expected to have a strong effect. To understand this discrepancy, we performed an integrated analysis at the level of transcriptomics and metabolomics. METHODS: In the study, tetracycline-inducible TATi/Ty-Rab1B parasite line treated with ATc at three different time points (0, 18 and 24 h) was used. We first observed the morphological changes caused by Rab1B depletion via transmission electron technology. Then, high-throughput transcriptome along with non-targeted metabolomics were performed to analyze the RNA expression and metabolite changes in the Rab1B-depleted parasite. The essential nature of Rab1B in the parasite was revealed by the integrated omics approach. RESULTS: Transmission electron micrographs showed a strong disorganization of endo-membranes in the Rab1B-depleted parasites. Our deep analysis of transcriptome and metabolome identified 2181 and 2374 differentially expressed genes (DEGs) and 30 and 83 differentially expressed metabolites (DEMs) at 18 and 24 h of induction in the tetracycline-inducible parasite line, respectively. These DEGs included key genes associated with crucial organelles that contain the rhoptry, microneme, endoplasmic reticulum and Golgi apparatus. The analysis of qRT-PCR verified some of the key DEGs identified by RNA-Seq, supporting that the key vesicular regulator Rab1B was involved in biogenesis of multiple parasite organelles. Functional enrichment analyses revealed pathways related to central carbon metabolisms and lipid metabolisms, such as the TCA cycle, glycerophospholipid metabolism and fatty acid biosynthesis and elongation. Further correlation analysis of the major DEMs and DEGs supported the role of Rab1B in biogenesis of fatty acids (e.g. myrisoleic acid and oleic acid) (R > 0.95 and P < 0.05), which was consistent with the scavenging role in biotin via the endocytic process. CONCLUSIONS: Rab1B played an important role in parasite growth and morphology, which was supported by the replication assay and transmission electron microscopy observation. Our multi-omics analyses provided detailed insights into the overall impact on the parasite upon depletion of the protein. These analyses reinforced the role of Rab1B in the endocytic process, which has an impact on fatty acid biogenesis and the TCA cycle. Taken together, these findings contribute to our understanding of a key vesicular regulator, Rab1B, on parasite metabolism and morphological formation in T. gondii.


Asunto(s)
Parásitos , Toxoplasma , Animales , Toxoplasma/genética , Toxoplasma/metabolismo , Transcriptoma , Perfilación de la Expresión Génica , Parásitos/genética , Ácidos Grasos/metabolismo , Tetraciclinas/metabolismo , Proteínas Protozoarias/genética
6.
mBio ; 14(4): e0130923, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37548452

RESUMEN

In the apicomplexans, endocytosed cargos (e.g., hemoglobin) are trafficked to a specialized organelle for digestion. This follows a unique endocytotic process at the micropore/cytostome in these parasites. However, the mechanism underlying endocytic trafficking remains elusive, due to the repurposing of classical endocytic proteins for the biogenesis of apical organelles. To resolve this issue, we have exploited the genetic tractability of the model apicomplexan Toxoplasma gondii, which ingests host cytosolic materials (e.g., green fluorescent protein[GFP]). We determined an association between protein prenylation and endocytic trafficking, and using an alkyne-labeled click chemistry approach, the prenylated proteome was characterized. Genome editing, using clustered regularly interspaced short palindromic repaet/CRISPR-associated nuclease 9 (CRISPR/Cas9), was efficiently utilized to generate genetically modified lines for the functional screening of 23 prenylated candidates. This identified four of these proteins that regulate the trafficking of endocytosed GFP vesicles. Among these proteins, Rab1B and YKT6.1 are highly conserved but are non-classical endocytic proteins in eukaryotes. Confocal imaging analysis showed that Rab1B and Ras are substantially localized to both the trans-Golgi network and the endosome-like compartments in the parasite. Conditional knockdown of Rab1B caused a rapid defect in secretory trafficking to the rhoptry bulb, suggesting a trafficking intersection role for the key regulator Rab1B. Further experiments confirmed a critical role for protein prenylation in regulating the stability/activity of these proteins (i.e., Rab1B and YKT6.1) in the parasite. Our findings define the molecular basis of endocytic trafficking and reveal a potential intersection function of Rab1B on membrane trafficking in T. gondii. This might extend to other related protists, including the malarial parasites. IMPORTANCE The protozoan Toxoplasma gondii establishes a permissive niche, in host cells, that allows parasites to acquire large molecules such as proteins. Numerous studies have demonstrated that the parasite repurposes the classical endocytic components for secretory sorting to the apical organelles, leaving the question of endocytic transport to the lysosome-like compartment unclear. Recent studies indicated that endocytic trafficking is likely to associate with protein prenylation in malarial parasites. This information promoted us to examine this association in the model apicomplexan T. gondii and to identify the key components of the prenylated proteome that are involved. By exploiting the genetic tractability of T. gondii and a host GFP acquisition assay, we reveal four non-classical endocytic proteins that regulate the transport of endocytosed cargos (e.g., GFP) in T. gondii. Thus, we extend the principle that protein prenylation regulates endocytic trafficking and elucidate the process of non-classical endocytosis in T. gondii and potentially in other related protists.


Asunto(s)
Toxoplasma , Toxoplasma/metabolismo , Proteoma/metabolismo , Proteínas Protozoarias/genética , Transporte de Proteínas , Endosomas/metabolismo , Proteínas Fluorescentes Verdes/metabolismo
7.
Int J Mol Sci ; 24(8)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37108334

RESUMEN

Protein prenylation is an important protein modification that is responsible for diverse physiological activities in eukaryotic cells. This modification is generally catalyzed by three types of prenyl transferases, which include farnesyl transferase (FT), geranylgeranyl transferase (GGT-1) and Rab geranylgeranyl transferase (GGT-2). Studies in malaria parasites showed that these parasites contain prenylated proteins, which are proposed to play multiple functions in parasites. However, the prenyl transferases have not been functionally characterized in parasites of subphylum Apicomplexa. Here, we functionally dissected functions of three of the prenyl transferases in the Apicomplexa model organism Toxoplasma gondii (T. gondii) using a plant auxin-inducible degron system. The homologous genes of the beta subunit of FT, GGT-1 and GGT-2 were endogenously tagged with AID at the C-terminus in the TIR1 parental line using a CRISPR-Cas9 approach. Upon depletion of these prenyl transferases, GGT-1 and GGT-2 had a strong defect on parasite replication. Fluorescent assay using diverse protein markers showed that the protein markers ROP5 and GRA7 were diffused in the parasites depleted with GGT-1 and GGT-2, while the mitochondrion was strongly affected in parasites depleted with GGT-1. Importantly, depletion of GGT-2 caused the stronger defect to the sorting of rhoptry protein and the parasite morphology. Furthermore, parasite motility was observed to be affected in parasites depleted with GGT-2. Taken together, this study functionally characterized the prenyl transferases, which contributed to an overall understanding of protein prenylation in T. gondii and potentially in other related parasites.


Asunto(s)
Parásitos , Toxoplasma , Animales , Transferasas/metabolismo , Parásitos/metabolismo , Toxoplasma/metabolismo , Farnesiltransferasa/metabolismo , Prenilación de Proteína , Transporte de Proteínas , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
8.
Nat Commun ; 14(1): 977, 2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36813769

RESUMEN

Apicomplexan parasite growth and replication relies on nutrient acquisition from host cells, in which intracellular multiplication occurs, yet the mechanisms that underlie the nutrient salvage remain elusive. Numerous ultrastructural studies have documented a plasma membrane invagination with a dense neck, termed the micropore, on the surface of intracellular parasites. However, the function of this structure remains unknown. Here we validate the micropore as an essential organelle for endocytosis of nutrients from the host cell cytosol and Golgi in the model apicomplexan Toxoplasma gondii. Detailed analyses demonstrated that Kelch13 is localized at the dense neck of the organelle and functions as a protein hub at the micropore for endocytic uptake. Intriguingly, maximal activity of the micropore requires the ceramide de novo synthesis pathway in the parasite. Thus, this study provides insights into the machinery underlying acquisition of host cell-derived nutrients by apicomplexan parasites that are otherwise sequestered from host cell compartments.


Asunto(s)
Toxoplasma , Toxoplasma/metabolismo , Endocitosis , Aparato de Golgi/metabolismo , Transporte Biológico , Proteínas Protozoarias/metabolismo
9.
Colloids Surf B Biointerfaces ; 180: 473-480, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31102851

RESUMEN

Evolutionary pressure has pushed many extant plants and animals to develop micro/nanostructures on their surfaces to keep them clean. These structures have become ideal models for bio-inspired design. Although microstructures on biological surfaces have been widely studied, little attention has been paid to the combined role of microstructures and animal's active cleaning behaviors in keeping their surfaces clean. In this study, we explored the relationship between these micro/nanostructures and wettability as well as the role of the housefly cleaning behaviors in keeping their wings clean. Hierarchical structures consisting of microscale macrotrichias with nanoscale grooves on the wings were observed under scanning electron microscope. The wings were hydrophobic (CA = 133.3°) but with high adhesion to water (CAH = 87.5°), indicating that they were non-self-cleaning surfaces. Macroscale droplets standing on the wings could be best described as being in a transitional wetting state between Wenzel and Cassie-Baxter states due to the presence of the nanoscale grooves, which increased the resistance to water penetration. The hydrophobicity decreased (CA = 109.9°) when the nanostructures were removed by coating the wings with a thick layer of polydimethylsiloxane (PDMS). The houseflies could highly efficiently remove the microscale droplets atop the macrotrichias, and reduce bacterial contamination on their wings through grooming and flutter activities. These active cleaning behaviors could offset the absence of self-cleaning properties and play a key role in keeping the wings clean. The results indicate that housefly wings could be used as a template for the design of special functional surfaces. The present findings not only improve our understanding of the wettability and cleaning properties of natural surfaces, but also provide important insights into the design of bio-inspired materials.


Asunto(s)
Conducta Animal/fisiología , Moscas Domésticas/anatomía & histología , Productos Domésticos , Alas de Animales/anatomía & histología , Animales , Dimetilpolisiloxanos/química , Moscas Domésticas/ultraestructura , Modelos Teóricos , Humectabilidad , Alas de Animales/ultraestructura
10.
Bio Protoc ; 8(4)2018 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-29644255

RESUMEN

Toxoplasma gondii is a member of the deadly phylum of protozoan parasites called Apicomplexa. As a model apicomplexan, there is a great wealth of information regarding T. gondii's 8,000+ protein coding genes including sequence variation, expression, and relative contribution to parasite fitness. However, new tools are needed to functionally investigate hundreds of putative essential protein coding genes. Accordingly, we recently implemented the auxin-inducible degron (AID) system for studying essential proteins in T. gondii. Here we provide a step-by-step protocol for examining protein function in T. gondii using the AID system in a tissue culture setting.

11.
Bio Protoc ; 8(6)2018 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-29644258

RESUMEN

Defining protein interaction networks can provide key insights into how protein complexes govern complex biological problems. Here we define a method for proximity based labeling using permissive biotin ligase to define protein networks in the intracellular parasite Toxoplasma gondii. When combined with CRISPR/Cas9 based tagging, this method provides a robust approach to defining protein networks. This approach detects interaction within intact cells, it is applicable to both soluble and insoluble components, including large proteins complexes that interact with the cytoskeleton and unique microtubule organizing center that comprises the apical complex in apicomplexan parasites.

12.
Nat Commun ; 8(1): 2236, 2017 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-29269729

RESUMEN

Apicomplexan parasites are typified by an apical complex that contains a unique microtubule-organizing center (MTOC) that organizes the cytoskeleton. In apicomplexan parasites such as Toxoplasma gondii, the apical complex includes a spiral cap of tubulin-rich fibers called the conoid. Although described ultrastructurally, the composition and functions of the conoid are largely unknown. Here, we localize 11 previously undescribed apical proteins in T. gondii and identify an essential component named conoid protein hub 1 (CPH1), which is conserved in apicomplexan parasites. CPH1 contains ankyrin repeats that are required for structural integrity of the conoid, parasite motility, and host cell invasion. Proximity labeling and protein interaction network analysis reveal that CPH1 functions as a hub linking key motor and structural proteins that contain intrinsically disordered regions and coiled coil domains. Our findings highlight the importance of essential protein hubs in controlling biological networks of MTOCs in early-branching protozoan parasites.


Asunto(s)
Centro Organizador de los Microtúbulos/metabolismo , Movimiento , Proteínas Protozoarias/metabolismo , Toxoplasma/metabolismo , Repetición de Anquirina , Apicomplexa/genética , Apicomplexa/metabolismo , Citoesqueleto/metabolismo , Centro Organizador de los Microtúbulos/ultraestructura , Proteoma/metabolismo , Proteínas Protozoarias/genética , Toxoplasma/genética , Toxoplasma/patogenicidad , Toxoplasma/ultraestructura , Tubulina (Proteína)/metabolismo
13.
J Med Chem ; 60(24): 9976-9989, 2017 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-28933846

RESUMEN

Calcium dependent protein kinase 1 (CDPK1) is an essential enzyme in the opportunistic pathogen Toxoplasma gondii. CDPK1 controls multiple processes that are critical to the intracellular replicative cycle of T. gondii including secretion of adhesins, motility, invasion, and egress. Remarkably, CDPK1 contains a small glycine gatekeeper residue in the ATP binding pocket making it sensitive to ATP-competitive inhibitors with bulky substituents that complement this expanded binding pocket. Here we explored structure-activity relationships of a series of pyrazolopyrimidine inhibitors of CDPK1 with the goal of increasing selectivity over host enzymes, improving antiparasite potency, and improving metabolic stability. The resulting lead compound 24 exhibited excellent enzyme inhibition and selectivity for CDPK1 and potently inhibited parasite growth in vitro. Compound 24 was also effective at treating acute toxoplasmosis in the mouse, reducing dissemination to the central nervous system, and decreasing reactivation of chronic infection in severely immunocompromised mice. These findings provide proof of concept for the development of small molecule inhibitors of CDPK1 for treatment of CNS toxoplasmosis.


Asunto(s)
Antiprotozoarios/química , Antiprotozoarios/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Protozoarias/antagonistas & inhibidores , Toxoplasmosis Cerebral/tratamiento farmacológico , Animales , Antiprotozoarios/farmacocinética , Femenino , Humanos , Masculino , Ratones , Inhibidores de Proteínas Quinasas/farmacocinética , Proteínas Quinasas/química , Proteínas Quinasas/metabolismo , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Pirazoles/química , Pirimidinas/química , Relación Estructura-Actividad , Toxoplasma/efectos de los fármacos , Toxoplasma/enzimología , Toxoplasma/crecimiento & desarrollo , Toxoplasmosis Cerebral/prevención & control
14.
PLoS Pathog ; 13(5): e1006379, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28475612

RESUMEN

Toxoplasma gondii contains an expanded number of calmodulin (CaM)-like proteins whose functions are poorly understood. Using a combination of CRISPR/Cas9-mediated gene editing and a plant-like auxin-induced degron (AID) system, we examined the roles of three apically localized CaMs. CaM1 and CaM2 were individually dispensable, but loss of both resulted in a synthetic lethal phenotype. CaM3 was refractory to deletion, suggesting it is essential. Consistent with this prediction auxin-induced degradation of CaM3 blocked growth. Phenotypic analysis revealed that all three CaMs contribute to parasite motility, invasion, and egress from host cells, and that they act downstream of microneme and rhoptry secretion. Super-resolution microscopy localized all three CaMs to the conoid where they overlap with myosin H (MyoH), a motor protein that is required for invasion. Biotinylation using BirA fusions with the CaMs labeled a number of apical proteins including MyoH and its light chain MLC7, suggesting they may interact. Consistent with this hypothesis, disruption of MyoH led to degradation of CaM3, or redistribution of CaM1 and CaM2. Collectively, our findings suggest these CaMs may interact with MyoH to control motility and cell invasion.


Asunto(s)
Calmodulina/metabolismo , Modelos Moleculares , Toxoplasma/fisiología , Toxoplasmosis/parasitología , Calmodulina/genética , Movimiento Celular , Citoesqueleto/metabolismo , Técnicas de Inactivación de Genes , Interacciones Huésped-Parásitos , Espectrometría de Masas , Miosinas/genética , Miosinas/metabolismo , Organismos Modificados Genéticamente , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Toxoplasma/citología , Toxoplasma/crecimiento & desarrollo , Toxoplasma/patogenicidad
15.
mBio ; 8(3)2017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28465425

RESUMEN

Cyclic GMP (cGMP)-dependent protein kinase (protein kinase G [PKG]) is essential for microneme secretion, motility, invasion, and egress in apicomplexan parasites, However, the separate roles of two isoforms of the kinase that are expressed by some apicomplexans remain uncertain. Despite having identical regulatory and catalytic domains, PKGI is plasma membrane associated whereas PKGII is cytosolic in Toxoplasma gondii To determine whether these isoforms are functionally distinct or redundant, we developed an auxin-inducible degron (AID) tagging system for conditional protein depletion in T. gondii By combining AID regulation with genome editing strategies, we determined that PKGI is necessary and fully sufficient for PKG-dependent cellular processes. Conversely, PKGII is functionally insufficient and dispensable in the presence of PKGI The difference in functionality mapped to the first 15 residues of PKGI, containing a myristoylated Gly residue at position 2 that is critical for membrane association and PKG function. Collectively, we have identified a novel requirement for cGMP signaling at the plasma membrane and developed a new system for examining essential proteins in T. gondiiIMPORTANCEToxoplasma gondii is an obligate intracellular apicomplexan parasite and important clinical and veterinary pathogen that causes toxoplasmosis. Since apicomplexans can only propagate within host cells, efficient invasion is critically important for their life cycles. Previous studies using chemical genetics demonstrated that cyclic GMP signaling through protein kinase G (PKG)-controlled invasion by apicomplexan parasites. However, these studies did not resolve functional differences between two compartmentalized isoforms of the kinase. Here we developed a conditional protein regulation tool to interrogate PKG isoforms in T. gondii We found that the cytosolic PKG isoform was largely insufficient and dispensable. In contrast, the plasma membrane-associated isoform was necessary and fully sufficient for PKG function. Our studies identify the plasma membrane as a key location for PKG activity and provide a broadly applicable system for examining essential proteins in T. gondii.


Asunto(s)
Membrana Celular/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Proteínas Protozoarias/metabolismo , Toxoplasma/metabolismo , Acilación , Animales , GMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/química , Proteínas Quinasas Dependientes de GMP Cíclico/clasificación , Edición Génica , Humanos , Ácidos Indolacéticos , Fosforilación , Isoformas de Proteínas/metabolismo , Proteínas Protozoarias/química , Transducción de Señal , Toxoplasma/citología , Toxoplasma/genética , Toxoplasmosis/metabolismo , Toxoplasmosis/parasitología
16.
Nat Commun ; 8: 13932, 2017 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-28051091

RESUMEN

Microsporidians are obligate intracellular parasites that have minimized their genome content and sub-cellular structures by reductive evolution. Here, we demonstrate that cristae-deficient mitochondria (mitosomes) of Trachipleistophora hominis are the functional site of iron-sulfur cluster (ISC) assembly, which we suggest is the essential task of these organelles. Cell fractionation, fluorescence imaging and immunoelectron microscopy demonstrate that mitosomes contain a complete pathway for [2Fe-2S] cluster biosynthesis that we biochemically reconstituted using purified mitosomal ISC proteins. The T. hominis cytosolic iron-sulfur protein assembly (CIA) pathway includes the essential Cfd1-Nbp35 scaffold complex that assembles a [4Fe-4S] cluster as shown by spectroscopic methods in vitro. Phylogenetic analyses reveal that the ISC and CIA pathways are predominantly bacterial, but their cytosolic and nuclear target Fe/S proteins are mainly archaeal. This mixed evolutionary history of Fe/S-related proteins and pathways, and their strong conservation among highly reduced parasites, provides compelling evidence for the ancient chimeric ancestry of eukaryotes.


Asunto(s)
Evolución Biológica , Proteínas Fúngicas/biosíntesis , Proteínas Hierro-Azufre/biosíntesis , Mitocondrias/metabolismo , Pansporablastina/metabolismo , Núcleo Celular/metabolismo , Citosol/metabolismo , Proteínas Fúngicas/genética , Proteínas Hierro-Azufre/genética , Pansporablastina/genética , Filogenia
17.
Methods Mol Biol ; 1498: 79-103, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27709570

RESUMEN

Efficient and site-specific alteration of the genome is key to decoding and altering the genomic information of an organism. Over the last couple of years, the RNA-guided Cas9 nucleases derived from the prokaryotic type 2 CRISPR (clustered regularly interspaced short palindromic repeats) systems have drastically improved our ability to engineer the genomes of a variety of organisms including Toxoplasma gondii. In this chapter, we describe detailed protocols for using the CRISPR/Cas9 system adapted from Streptococcus pyogenes to perform efficient genetic manipulations in T. gondii such as gene disruption, gene tagging and genetic complementation. The technical details of the strategy, including CRISPR plasmid construction, target construct generation, parasite transfection and positive clone identification are also provided. These methods are easy to customize to any gene of interest (GOI) and will greatly accelerate studies on this important pathogen.


Asunto(s)
Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Genoma de Protozoos/genética , Toxoplasma/genética , Proteínas Asociadas a CRISPR/genética , Endonucleasas/genética , Edición Génica/métodos , Marcación de Gen/métodos , Plásmidos/genética , ARN Guía de Kinetoplastida/genética , Transfección/métodos
18.
Infect Immun ; 84(5): 1262-1273, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26755159

RESUMEN

Calcium-dependent protein kinases (CDPKs) are expanded in apicomplexan parasites, especially in Toxoplasma gondii where 14 separate genes encoding these enzymes are found. Although previous studies have shown that several CDPKs play a role in controlling invasion, egress, and cell division in T. gondii, the roles of most of these genes are unexplored. Here we developed a more efficient method for gene disruption using CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9) that was modified to completely delete large, multiexonic genes from the genome and to allow serial replacement by recycling of the selectable marker using Cre-loxP. Using this system, we generated a total of 24 mutants in type 1 and 2 genetic backgrounds to ascertain the functions of noncanonical CDPKs. Remarkably, although we were able to confirm the essentiality of CDPK1 and CDPK7, the majority of CDPKs had no discernible phenotype for growth in vitro or infection in the mouse model. The exception to this was CDPK6, loss of which leads to reduced plaquing, fitness defect in a competition assay, and reduced tissue cyst formation in chronically infected mice. Our findings highlight the utility of CRISPR/Cas9 for rapid serial gene deletion and also suggest that additional models are needed to reveal the functions of many genes in T. gondii.


Asunto(s)
Calcio/metabolismo , Técnicas de Inactivación de Genes/métodos , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Eliminación de Secuencia , Toxoplasma/enzimología , Toxoplasma/genética , Animales , Sistemas CRISPR-Cas , Modelos Animales de Enfermedad , Femenino , Genes Esenciales , Genes Protozoarios , Ratones Endogámicos C57BL , Toxoplasma/crecimiento & desarrollo , Toxoplasmosis/parasitología , Toxoplasmosis/patología
19.
Antimicrob Agents Chemother ; 60(1): 570-9, 2016 01.
Artículo en Inglés | MEDLINE | ID: mdl-26552986

RESUMEN

Cryptosporidiosis is a serious diarrheal disease in immunocompromised patients and malnourished children, and treatment is complicated by a lack of adequate drugs. Recent studies suggest that the natural occurrence of a small gatekeeper residue in serine threonine calcium-dependent protein kinase 1 (CDPK1) of Cryptosporidium parvum might be exploited to target this enzyme and block parasite growth. Here were explored the potency with which a series of pyrazolopyrimidine analogs, which are selective for small gatekeeper kinases, inhibit C. parvum CDPK1 and block C. parvum growth in tissue culture in vitro. Although these compounds potently inhibited kinase activity in vitro, most had no effect on parasite growth. Moreover, among those that were active against parasite growth, there was a very poor correlation with their 50% inhibitory concentrations against the enzyme. Active compounds also had no effect on cell invasion, unlike the situation in Toxoplasma gondii, where these compounds block CDPK1, prevent microneme secretion, and disrupt cell invasion. These findings suggest that CPDK1 is not essential for C. parvum host cell invasion or growth and therefore that it is not the optimal target for therapeutic intervention. Nonetheless, several inhibitors with low micromolar 50% effective concentrations were identified, and these may affect other essential targets in C. parvum that are worthy of further exploration.


Asunto(s)
Antiprotozoarios/farmacología , Cryptosporidium parvum/efectos de los fármacos , Proteínas Quinasas/química , Proteínas Protozoarias/química , Pirazoles/farmacología , Pirimidinas/farmacología , Esporozoítos/efectos de los fármacos , Animales , Antiprotozoarios/síntesis química , Bovinos , Línea Celular , Cryptosporidium parvum/enzimología , Cryptosporidium parvum/genética , Cryptosporidium parvum/crecimiento & desarrollo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/parasitología , Heces/parasitología , Expresión Génica , Humanos , Concentración 50 Inhibidora , Masculino , Pruebas de Sensibilidad Parasitaria , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Pirazoles/síntesis química , Pirimidinas/síntesis química , Esporozoítos/enzimología , Esporozoítos/crecimiento & desarrollo , Relación Estructura-Actividad
20.
Mol Microbiol ; 89(1): 135-51, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23675735

RESUMEN

Ferredoxins are highly conserved proteins that function universally as electron transporters. They not only require Fe-S clusters for their own activity, but are also involved in Fe-S formation itself. We identified two homologues of ferredoxin in the genome of the parasitic protist Trypanosoma brucei and named them TbFdxA and TbFdxB. TbFdxA protein, which is homologous to other eukaryotic mitochondrial ferredoxins, is essential in both the procyclic (= insect-transmitted) and bloodstream (mammalian) stage, but is more abundant in the active mitochondrion of the former stage. Depletion of TbFdxA caused disruption of Fe-S cluster biogenesis and lowered the level of intracellular haem. However, TbFdxB, which is present exclusively within kinetoplastid flagellates, was non-essential for the procyclic stage, and double knock-down with TbFdxA showed this was not due to functional redundancy between the two homologues. Heterologous expressions of human orthologues HsFdx1 and HsFdx2 fully rescued the growth and Fe-S-dependent enzymatic activities of TbFdxA knock-down. In both cases, the genuine human import signals allowed efficient import into the T. brucei mitochondrion. Given the huge evolutionary distance between trypanosomes and humans, ferredoxins clearly have ancestral and highly conserved function in eukaryotes and both human orthologues have retained the capacity to participate in Fe-S cluster assembly.


Asunto(s)
Ferredoxinas/metabolismo , Trypanosoma brucei brucei/enzimología , Trypanosoma brucei brucei/metabolismo , Análisis por Conglomerados , Transporte de Electrón , Ferredoxinas/genética , Técnicas de Silenciamiento del Gen , Prueba de Complementación Genética , Humanos , Filogenia , Transporte de Proteínas , Homología de Secuencia de Aminoácido , Trypanosoma brucei brucei/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA