Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 133(14): 140602, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39423418

RESUMEN

The accurate determination of the electronic structure of strongly correlated materials using first principle methods is of paramount importance in condensed matter physics, computational chemistry, and material science. However, due to the exponential scaling of computational resources, incorporating such materials into classical computation frameworks becomes prohibitively expensive. In 2016, Bauer et al. proposed a hybrid quantum-classical approach to correlated materials [B. Bauer et al., Hybrid quantum-classical approach to correlated materials, Phys. Rev. X 6, 031045 (2016).PRXHAE2160-330810.1103/PhysRevX.6.031045] that can efficiently tackle the electronic structure of complex correlated materials. Here, we experimentally demonstrate that approach to tackle the computational challenges associated with strongly correlated materials. By seamlessly integrating quantum computation into classical computers, we address the most computationally demanding aspect of the calculation, namely the computation of the Green's function, using a spin quantum processor. Furthermore, we realize a self-consistent determination of the single impurity Anderson model through a feedback loop between quantum and classical computations. A quantum phase transition in the Hubbard model from the metallic phase to the Mott insulator is observed as the strength of electron correlation increases. As the number of qubits with high control fidelity continues to grow, our experimental findings pave the way for solving even more complex models, such as strongly correlated crystalline materials or intricate molecules.

2.
Phys Rev Lett ; 133(4): 040401, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39121421

RESUMEN

We experimentally probe the interplay of the quantum switch with the laws of thermodynamics. The quantum switch places two channels in a superposition of orders and may be applied to thermalizing channels. Quantum-switching thermal channels has been shown to give apparent violations of the second law. Central to these apparent violations is how quantum switching channels can increase the capacity to communicate information. We experimentally show this increase and how it is consistent with the laws of thermodynamics, demonstrating how thermodynamic resources are consumed. We use a nuclear magnetic resonance approach with coherently controlled interactions of nuclear spin qubits. We verify an analytical upper bound on the increase in capacity for channels that preserve energy and thermal states, and demonstrate that the bound can be exceeded for an energy-altering channel. We show that the switch can be used to take a thermal state to a state that is not thermal, while consuming free energy associated with the coherence of a control system. The results show how the switch can be incorporated into quantum thermodynamics experiments as an additional resource.

3.
Phys Rev Lett ; 132(21): 210403, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38856252

RESUMEN

A fundamental challenge in quantum thermodynamics is the exploration of inherent dimensional constraints in thermodynamic machines. In the context of two-level systems, the most compact refrigerator necessitates the involvement of three entities, operating under self-contained conditions that preclude the use of external work sources. Here, we build such a smallest refrigerator using a nuclear spin system, where three distinct two-level carbon-13 nuclei in the same molecule are involved to facilitate the refrigeration process. The self-contained feature enables it to operate without relying on net external work, and the unique mechanism sets this refrigerator apart from its classical counterparts. We evaluate its performance under varying conditions and systematically scrutinize the cooling constraints across a spectrum of scenarios, which sheds light on the interplay between quantum information and thermodynamics.

4.
Innovation (Camb) ; 4(5): 100480, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37560329

RESUMEN

Topological quantum computation (TQC) is one of the most striking architectures that can realize fault-tolerant quantum computers. In TQC, the logical space and the quantum gates are topologically protected, i.e., robust against local disturbances. The topological protection, however, requires complicated lattice models and hard-to-manipulate dynamics; even the simplest system that can realize universal TQC-the Fibonacci anyon system-lacks a physical realization, let alone braiding the non-Abelian anyons. Here, we propose a disk model that can simulate the Fibonacci anyon system and construct the topologically protected logical spaces with the Fibonacci anyons. Via braiding the Fibonacci anyons, we can implement universal quantum gates on the logical space. Our disk model merely requires two physical qubits to realize three Fibonacci anyons at the boundary. By 15 sequential braiding operations, we construct a topologically protected Hadamard gate, which is to date the least-resource requirement for TQC. To showcase, we implement a topological Hadamard gate with two nuclear spin qubits, which reaches 97.18% fidelity by randomized benchmarking. We further prove by experiment that the logical space and Hadamard gate are topologically protected: local disturbances due to thermal fluctuations result in a global phase only. As a platform-independent proposal, our work is a proof of principle of TQC and paves the way toward fault-tolerant quantum computation.

5.
Phys Rev Lett ; 129(10): 100603, 2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36112431

RESUMEN

Indefinite causal order (ICO) is playing a key role in recent quantum technologies. Here, we experimentally study quantum thermodynamics driven by ICO on nuclear spins using the nuclear magnetic resonance system. We realize the ICO of two thermalizing channels to exhibit how the mechanism works, and show that the working substance can be cooled or heated albeit it undergoes thermal contacts with reservoirs of the same temperature. Moreover, we construct a single cycle of the ICO refrigerator based on the Maxwell's demon mechanism, and evaluate its performance by measuring the work consumption and the heat energy extracted from the low-temperature reservoir. Unlike classical refrigerators in which the coefficient of performance (COP) is perversely higher the closer the temperature of the high-temperature and low-temperature reservoirs are to each other, the ICO refrigerator's COP is always bounded to small values due to the nonunit success probability in projecting the ancillary qubit to the preferable subspace. To enhance the COP, we propose and experimentally demonstrate a general framework based on the density matrix exponentiation (DME) approach, as an extension to the ICO refrigeration. The COP is observed to be enhanced by more than 3 times with the DME approach. Our Letter demonstrates a new way for nonclassical heat exchange, and paves the way towards construction of quantum refrigerators on a quantum system.

6.
Phys Rev Lett ; 129(7): 070502, 2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36018707

RESUMEN

In open quantum systems, the precision of metrology inevitably suffers from the noise. In Markovian open quantum dynamics, the precision can not be improved by using entangled probes although the measurement time is effectively shortened. However, it was predicted over one decade ago that in a non-Markovian one, the error can be significantly reduced by the quantum Zeno effect (QZE) [Chin, Huelga, and Plenio, Phys. Rev. Lett. 109, 233601 (2012)PRLTAO0031-900710.1103/PhysRevLett.109.233601]. In this work, we apply a recently developed quantum simulation approach to experimentally verify that entangled probes can improve the precision of metrology by the QZE. Up to n=7 qubits, we demonstrate that the precision has been improved by a factor of n^{1/4}, which is consistent with the theoretical prediction. Our quantum simulation approach may provide an intriguing platform for experimental verification of various quantum metrology schemes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...