RESUMEN
Two-dimensional (2D) materials, which possess rich underlying physical properties that can provide the potential for designing more efficient and compact optoelectronic devices, have attracted great interest among scientists. Due to the atomic-scale thickness and the anisotropy of in-plane conductivity, 2D black phosphorus (BP) exhibits a polarization-dependent absorption spectrum with low absorption, which limits its further development in polarization-independent applications such as light absorbers and sensors. In this paper, a polarization-independent perfect absorber in the terahertz band is proposed, which is composed of a patterned BP monolayer deposited on a lossless photonic crystal (PC) slab with a back reflection mirror. The absorption of the patterned BP monolayer can reach 100% at resonant frequencies through the critical coupling mechanism of guided resonance. Moreover, the absorber exhibits polarization-independent absorption characteristics for vertically incident light, which are attributed to the 4-fold rotational symmetry of the PC substrate and the patterned BP monolayer deposited on it. This work opens up the possibility of fabricating optically polarization-independent devices based on single-layer 2D anisotropic materials.
RESUMEN
In this study, we investigated the effects of sweroside on podocyte injury in diabetic nephropathy (DN) mice and elucidated its molecular mechanisms. We conducted in vivo experiments using a C57BL/6 mice model of DN to explore the effects of sweroside on proteinuria and podocyte injury in DN mice. In in vitro experiments, conditionally immortalized mouse podocytes were treated with high glucose and sweroside, and the protective effects of sweroside on podocyte injury were analyzed. In vitro, Akt/BAD pathways were detected using gene siRNA silencing assays and found to be involved in the protective roles of sweroside in high glucose-mediated podocyte injury. In vivo, sweroside significantly decreased albuminuria in DN mice (p < 0.01). periodic acid-Schiff staining showed that sweroside alleviated the glomerular volume and mesangium expansion in DN mice. Consistently, western blot and reverse transcription-polymerase chain reaction analyses showed that the profibrotic molecule expression in the glomeruli declined in sweroside-treated DN mice. Immunofluorescent results showed that sweroside preserved nephrin and podocin expression, and transmission electron microscopy showed that sweroside attenuated podocyte injury. In DN mice, sweroside decreased podocyte apoptosis, and increased nephrin, podocin expression and decreased desmin and HIF1α expression. These results confirmed that sweroside ameliorated albuminuria, glomerulomegaly, and glomerulosclerosis in these mice. Experiments in vitro revealed that sweroside improved HG-induced podocyte injury and apoptosis. Sweroside stimulated activation of the Akt/BAD pathway and upregulated Bcl-2-associated death promoter (BAD) and p-Akt. Overall, sweroside protected podocytes from injury and prevented the progression of DN, providing a novel strategy for the treatment of DN.
Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Podocitos , Ratones , Animales , Podocitos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Albuminuria/tratamiento farmacológico , Albuminuria/metabolismo , Diabetes Mellitus Experimental/metabolismo , Ratones Endogámicos C57BL , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/metabolismo , Glucosa/metabolismo , ApoptosisRESUMEN
We introduce the propagation of Pearcey Gaussian (PG) beams in a strongly nonlocal nonlinear medium (SNNM) analytically. Our results show that PG beams propagating in the SNNM have two different focusing positions. The intensity peak appears at different focusing positions depending on the selection of the nonlinear parameters. In addition, the effects of the nonlinear parameters and the scaling factor on the trajectory, the position of the intensity focusing, the intensity evolution between focus locations, and the radiation force are studied.
RESUMEN
Symmetric embedded waveguides were fabricated in heavy metal oxide SF10 glass using slit-shaped infrared femtosecond laser writing in the low-repetition frequency regime. The impact of the writing parameters on the waveguide formation in the transverse writing scheme was systemically studied. Results indicate that efficient waveguides can be inscribed in a wide parameter space ranging from 500 fs to 1.5 ps pulse duration, 0.7-4.2 µJ pulse energy, and 5 µm/s to 640 µm/s scan speed and pointing out the robustness of the photoinscription process. The refractive index profile reconstructed from the measured near field pattern goes up to 10(-3). In addition, propagation losses of the waveguides are tolerable, with the lowest propagation loss estimated at 0.7 dB/cm. With a 5 µm/s scan speed and 3.5 µJ pulse energy in a high-dose regime, few-mode guiding was achieved in the waveguide at 800 nm signal injection wavelength. This is due to a combination of increased refractive index in the core of the trace and the appearance of a depressed cladding.
RESUMEN
We report on the single-step fabrication of stressed optical waveguides with tubular depressed-refractive-index cladding in phosphate glasses by the use of focused femtosecond hollow laser beams. Tubelike low index regions appear under direct exposure due to material rarefaction following expansion. Strained compacted zones emerged in domains neighboring the tubular track of lower refractive index, and waveguiding occurs mainly within the tube core fabricated by the engineered femtosecond laser beam. The refractive index profile of the optical waveguide was reconstructed from the measured transmitted near-field intensity.
RESUMEN
Ultrashort pulsed laser photoinscription of Ti:Sapphire crystals may result in the self-organization of nanoscale material redistribution regions in regular patterns within the laser trace and stress-induced birefringence around the laser trace. We report on the formation of anisotropic optical waveguides in Ti:Sapphire by a procedure that involves femtosecond laser inscription of adjacent nonguiding birefringent traces with nanopatterned crosssections and the accumulation of stress birefringence in the region between. Double parallel line structures with a separation of 25µm with vertical and horizontal nanoscale arrangements were written with a choice of orthogonal polarizations. Due to anisotropic light scattering on periodic nanostructures and stress-induced birefringence in the central zone, remarkable polarization dependent guiding effects were observed as a function of the microscopic geometry of the structures. Building on this polarization sensitivity, several structure such as 3 × 3 waveguide arrays, diamond and hexagon patterns are also investigated.