Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 130(14): 146101, 2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37084444

RESUMEN

Because of the half-filled t_{2g}-electron configuration, the BO_{6} octahedral distortion in a 3d^{3} perovskite system is usually very limited. In this Letter, a perovskitelike oxide Hg_{0.75}Pb_{0.25}MnO_{3} (HPMO) with a 3d^{3} Mn^{4+} state was synthesized by using high pressure and high temperature methods. This compound exhibits an unusually large octahedral distortion enhanced by approximately 2 orders of magnitude compared with that observed in other 3d^{3} perovskite systems like RCr^{3+}O_{3} (R=rare earth). Essentially different from centrosymmetric HgMnO_{3} and PbMnO_{3}, the A-site doped HPMO presents a polar crystal structure with the space group Ama2 and a substantial spontaneous electric polarization (26.5 µC/cm^{2} in theory) arising from the off-center displacements of A- and B-site ions. More interestingly, a prominent net photocurrent and switchable photovoltaic effect with a sustainable photoresponse were observed in the current polycrystalline HPMO. This Letter provides an exceptional d^{3} material system which shows unusually large octahedral distortion and displacement-type ferroelectricity violating the "d^{0}-ness" rule.

3.
Proc Natl Acad Sci U S A ; 116(25): 12156-12160, 2019 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-31109998

RESUMEN

The mechanism of superconductivity in cuprates remains one of the big challenges of condensed matter physics. High-T c cuprates crystallize into a layered perovskite structure featuring copper oxygen octahedral coordination. Due to the Jahn Teller effect in combination with the strong static Coulomb interaction, the octahedra in high-T c cuprates are elongated along the c axis, leading to a 3dx 2-y 2 orbital at the top of the band structure wherein the doped holes reside. This scenario gives rise to 2D characteristics in high-T c cuprates that favor d-wave pairing symmetry. Here, we report superconductivity in a cuprate Ba2CuO4-y , wherein the local octahedron is in a very exceptional compressed version. The Ba2CuO4-y compound was synthesized at high pressure at high temperatures and shows bulk superconductivity with critical temperature (T c ) above 70 K at ambient conditions. This superconducting transition temperature is more than 30 K higher than the T c for the isostructural counterparts based on classical La2CuO4 X-ray absorption measurements indicate the heavily doped nature of the Ba2CuO4-y superconductor. In compressed octahedron, the 3d3z 2-r 2 orbital will be lifted above the 3dx 2-y 2 orbital, leading to significant 3D nature in addition to the conventional 3dx 2-y 2 orbital. This work sheds important light on advancing our comprehensive understanding of the superconducting mechanism of high T c in cuprate materials.

4.
Sci Rep ; 7: 44367, 2017 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-28300156

RESUMEN

Recently, theoretical studies show that layered HfTe5 is at the boundary of weak &strong topological insulator (TI) and might crossover to a Dirac semimetal state by changing lattice parameters. The topological properties of 3D stacked HfTe5 are expected hence to be sensitive to pressures tuning. Here, we report pressure induced phase evolution in both electronic &crystal structures for HfTe5 with a culmination of pressure induced superconductivity. Our experiments indicated that the temperature for anomaly resistance peak (Tp) due to Lifshitz transition decreases first before climbs up to a maximum with pressure while the Tp minimum corresponds to the transition from a weak TI to strong TI. The HfTe5 crystal becomes superconductive above ~5.5 GPa where the Tp reaches maximum. The highest superconducting transition temperature (Tc) around 5 K was achieved at 20 GPa. Crystal structure studies indicate that HfTe5 transforms from a Cmcm phase across a monoclinic C2/m phase then to a P-1 phase with increasing pressure. Based on transport, structure studies a comprehensive phase diagram of HfTe5 is constructed as function of pressure. The work provides valuable experimental insights into the evolution on how to proceed from a weak TI precursor across a strong TI to superconductors.

5.
Sci Rep ; 7: 39699, 2017 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-28051188

RESUMEN

Strong spin orbital interaction (SOI) can induce unique quantum phenomena such as topological insulators, the Rashba effect, or p-wave superconductivity. Combining these three quantum phenomena into a single compound has important scientific implications. Here we report experimental observations of consecutive quantum phase transitions from a Rashba type topological trivial phase to topological insulator state then further proceeding to superconductivity in a SOI compound BiTeI tuned via pressures. The electrical resistivity measurement with V shape change signals the transition from a Rashba type topological trivial to a topological insulator phase at 2 GPa, which is caused by an energy gap close then reopen with band inverse. Superconducting transition appears at 8 GPa with a critical temperature TC of 5.3 K. Structure refinements indicate that the consecutive phase transitions are correlated to the changes in the Bi-Te bond and bond angle as function of pressures. The Hall Effect measurements reveal an intimate relationship between superconductivity and the unusual change in carrier density that points to possible unconventional superconductivity.

6.
Nature ; 458(7234): 60-3, 2009 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-19262669

RESUMEN

Changes of valence states in transition-metal oxides often cause significant changes in their structural and physical properties. Chemical doping is the conventional way of modulating these valence states. In ABO(3) perovskite and/or perovskite-like oxides, chemical doping at the A site can introduce holes or electrons at the B site, giving rise to exotic physical properties like high-transition-temperature superconductivity and colossal magnetoresistance. When valence-variable transition metals at two different atomic sites are involved simultaneously, we expect to be able to induce charge transfer-and, hence, valence changes-by using a small external stimulus rather than by introducing a doping element. Materials showing this type of charge transfer are very rare, however, and such externally induced valence changes have been observed only under extreme conditions like high pressure. Here we report unusual temperature-induced valence changes at the A and B sites in the A-site-ordered double perovskite LaCu(3)Fe(4)O(12); the underlying intersite charge transfer is accompanied by considerable changes in the material's structural, magnetic and transport properties. When cooled, the compound shows a first-order, reversible transition at 393 K from LaCu(2+)(3)Fe(3.75+)(4)O(12) with Fe(3.75+) ions at the B site to LaCu(3+)(3)Fe(3+)(4)O(12) with rare Cu(3+) ions at the A site. Intersite charge transfer between the A-site Cu and B-site Fe ions leads to paramagnetism-to-antiferromagnetism and metal-to-insulator isostructural phase transitions. What is more interesting in relation to technological applications is that this above-room-temperature transition is associated with a large negative thermal expansion.


Asunto(s)
Compuestos de Calcio/química , Óxidos/química , Temperatura , Titanio/química , Cristalografía , Isomerismo , Espectroscopía de Mossbauer , Termogravimetría
7.
Phys Rev Lett ; 96(4): 046408, 2006 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-16486861

RESUMEN

Comprehensive measurements of electrical transport properties under pressure, thermal conductivity, magnetic susceptibility, and room-temperature compressibility have been used to characterize SrCrO3 and CaCrO3 perovskites synthesized under high pressure. Comparison with other narrow-band perovskite oxides suggests that their anomalous physical properties are correlated with bond-length instabilities caused by the crossover from localized to itinerant electronic behavior.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA