Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Phylogenet Evol ; 99: 155-167, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26947710

RESUMEN

Species delimitation is a vital issue concerning evolutionary biology and conservation of biodiversity. However, it is a challenging task for several reasons, including the low interspecies variability of markers currently used in phylogenetic reconstructions and the occurrence of reticulate evolution and polyploidy in many lineages of flowering plants. The first phylogeny of the grass genus Eriochrysis is presented here, focusing on the New World species, in order to examine its relationships to other genera of the subtribe Saccharinae/tribe Andropogoneae and to define the circumscriptions of its taxonomically complicated species. Molecular cloning and sequencing of five regions of four low-copy nuclear genes (apo1, d8, ep2-ex7 and ep2-ex8, kn1) were performed, as well as complete plastome sequencing. Trees were reconstructed using maximum parsimony, maximum likelihood, and Bayesian inference analyses. The present phylogenetic analyses indicate that Eriochrysis is monophyletic and the Old World E. pallida is sister to the New World species. Subtribe Saccharinae is polyphyletic, as is the genus Eulalia. Based on nuclear and plastome sequences plus morphology, we define the circumscriptions of the New World species of Eriochrysis: E. laxa is distinct from E. warmingiana, and E. villosa is distinct from E. cayennensis. Natural hybrids occur between E. laxa and E. villosa. The hybrids are probably tetraploids, based on the number of paralogues in the nuclear gene trees. This is the first record of a polyploid taxon in the genus Eriochrysis. Some incongruities between nuclear genes and plastome analyses were detected and are potentially caused by incomplete lineage sorting and/or ancient hybridization. The set of low-copy nuclear genes used in this study seems to be sufficient to resolve phylogenetic relationships and define the circumscriptions of other species complexes in the grass family and relatives, even in the presence of polyploidy and reticulate evolution. Complete plastome sequencing is also a promising tool for phylogenetic inference.


Asunto(s)
Genoma de Planta , Hibridación Genética , Poaceae/genética , Teorema de Bayes , Biodiversidad , ADN/química , ADN/aislamiento & purificación , ADN/metabolismo , Filogenia , Poaceae/clasificación , Poliploidía , Análisis de Secuencia de ADN
2.
Am J Bot ; 102(2): 248-63, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25667078

RESUMEN

PREMISE OF THE STUDY: Polyploidy and reticulate evolution are often a complication for discovering phylogenetic relationships between genera and species. Despite the huge economic importance of sugarcane (Saccharum officinarum-Poaceae, Andropogoneae), the limits of the genus Saccharum and its species are complex and largely unresolved, involving both polyploidy and reticulate evolution. This study aimed to assess the phylogenetic relationships of Saccharum s.l., including Erianthus and Tripidium, as well as investigate the taxonomic circumscription of the South American species of the genus. METHODS: Molecular cloning and sequencing of five regions of four low-copy nuclear loci were performed, including Aberrant panicle organization1 (apo1), Dwarf8 (d8), two exons of Erect panicle2 (ep2-ex7 and ep2-ex8), and Retarded palea1 (rep1). Concatenated trees were reconstructed using Maximum Parsimony, Maximum Likelihood, and Bayesian Inference analyses. KEY RESULTS: The allopolyploid origin of Saccharum was demonstrated using evidence from nuclear genes. The samples of Saccharum s.l. grouped in two distinct clades, with S. arundinaceum and S. ravennae (= Tripidium, or Erianthus sect. Ripidium) apart from all other species analyzed of the genus. Saccharum angustifolium, S. asperum, and S. villosum correspond to distinct clades (different species). The plants with intermediate morphology between S. angustifolium and S. villosum presented a pattern of paralogues consistent with a hybrid origin. CONCLUSIONS: Saccharum s.l. is polyphyletic and Tripidium should be recognized as a distinct genus. However, no strong evidence was found to support the segregation of Erianthus. The taxonomic circumscription of the South American species of the genus was resolved and the occurrence of natural hybrids was documented. Better understanding of the phylogenetic relationships of Saccharum and relatives may be useful for sugarcane breeders to identify potential taxa for interspecific and intergeneric crosses in the genetic improvement of sugarcane.


Asunto(s)
Evolución Biológica , ADN de Plantas/análisis , Genoma de Planta , Fenotipo , Filogenia , Poliploidía , Saccharum/genética , Teorema de Bayes , Clasificación , Clonación Molecular , Exones , Sitios Genéticos , Hibridación Genética , Saccharum/anatomía & histología , América del Sur , Especificidad de la Especie
3.
Mol Phylogenet Evol ; 78: 105-17, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24811091

RESUMEN

The plastid spacer trnD-trnT and the nuclear ribosomal internal transcribed spacer (ITS) were sequenced for 37 samples of herbaceous bamboos (Poaceae: Olyreae), including all Raddia species and allied genera, as well as two members of the woody bamboos (tribes Bambuseae and Arundinarieae), in order to examine their relationships. The sequences were analyzed using maximum parsimony and Bayesian inference. Both the individual and combined analyses of ITS and trnD-trnT supported Olyreae as a monophyletic group. All species of Raddia also formed a well-supported monophyletic group, and combined datasets allowed us to outline some relationships within this group. Individual analyses indicated incongruence regarding the sister group of Raddia, with ITS data weakly indicating Raddiella malmeana whereas trnD-trnT data supported Sucrea maculata in this position. However, the combined analysis supported Sucrea as sister to Raddia, although the monophyly of Sucrea is not well supported. Parodiolyra is paraphyletic to Raddiella in all analyses; Olyra is also paraphyletic, with species of Lithachne, Arberella and Cryptochloa nested within it. Eremitis and Pariana appeared as an isolated clade within Olyreae, and the position of the New Guinean Buergersiochloa remains uncertain within this tribe.


Asunto(s)
Filogenia , Poaceae/clasificación , Teorema de Bayes , ADN de Plantas/química , ADN Espaciador Ribosómico/química , Plastidios/genética , Poaceae/anatomía & histología , Poaceae/genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...