Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(15): e2320456121, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38568974

RESUMEN

Prion-like spread of disease-specific tau conformers is a hallmark of all tauopathies. A 19-residue probe peptide containing a P301L mutation and spanning the R2/R3 splice junction of tau folds and stacks into seeding-competent fibrils and induces aggregation of 4R, but not 3R tau. These tau peptide fibrils propagate aggregated intracellular tau over multiple generations, have a high ß-sheet content, a colocalized lipid signal, and adopt a well-defined U-shaped fold found in 4R tauopathy brain-derived fibrils. Fully atomistic replica exchange molecular dynamics (MD) simulations were used to compute the free energy landscapes of the conformational ensemble of the peptide monomers. These identified an aggregation-prohibiting ß-hairpin structure and an aggregation-competent U-fold unique to 4R tauopathy fibrils. Guided by MD simulations, we identified that the N-terminal-flanking residues to PHF6, which slightly vary between 4R and 3R isoforms, modulate seeding. Strikingly, when a single amino acid switch at position 305 replaced the serine of 4R tau with a lysine from the corresponding position in the first repeat of 3R tau, the seeding induced by the 19-residue peptide was markedly reduced. Conversely, a 4R tau mimic with three repeats, prepared by replacing those amino acids in the first repeat with those amino acids uniquely present in the second repeat, recovered aggregation when exposed to the 19-residue peptide. These peptide fibrils function as partial prions to recruit naive 4R tau-ten times the length of the peptide-and serve as a critical template for 4R tauopathy propagation. These results hint at opportunities for tau isoform-specific therapeutic interventions.


Asunto(s)
Priones , Tauopatías , Humanos , Proteínas tau/metabolismo , Tauopatías/metabolismo , Isoformas de Proteínas/metabolismo , Priones/metabolismo , Péptidos , Aminoácidos
2.
Nat Commun ; 15(1): 350, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38191490

RESUMEN

Understanding metabolic heterogeneity is the key to uncovering the underlying mechanisms of metabolic-related diseases. Current metabolic imaging studies suffer from limitations including low resolution and specificity, and the model systems utilized often lack human relevance. Here, we present a single-cell metabolic imaging platform to enable direct imaging of lipid metabolism with high specificity in various human-derived 2D and 3D culture systems. Through the incorporation of an azide-tagged infrared probe, selective detection of newly synthesized lipids in cells and tissue became possible, while simultaneous fluorescence imaging enabled cell-type identification in complex tissues. In proof-of-concept experiments, newly synthesized lipids were directly visualized in human-relevant model systems among different cell types, mutation status, differentiation stages, and over time. We identified upregulated lipid metabolism in progranulin-knockdown human induced pluripotent stem cells and in their differentiated microglia cells. Furthermore, we observed that neurons in brain organoids exhibited a significantly lower lipid metabolism compared to astrocytes.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Astrocitos , Azidas , Encéfalo/diagnóstico por imagen , Lípidos
3.
bioRxiv ; 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38077065

RESUMEN

Tau forms toxic fibrillar aggregates in a family of neurodegenerative diseases known as tauopathies. The faithful replication of tauopathy-specific fibril structures is a critical gap for developing diagnostic and therapeutic tools. This study debuts a strategy of identifying a critical segment of tau that forms a folding motif that is characteristic of a family of tauopathies and isolating it as a standalone peptide that form seeding-competent fibrils. The 19-residue jR2R3 peptide (295-313) spanning the R2/R3 splice junction of tau, in the presence of P301L, forms seeding-competent amyloid fibrils. This tau fragment contains the hydrophobic VQIVYK hexapeptide that is part of the core of every pathological tau fibril structure solved to-date and an intramolecular counter-strand that stabilizes the strand-loop-strand (SLS) motif observed in 4R tauopathy fibrils. This study shows that P301L exhibits a duality of effects: it lowers the barrier for the peptide to adopt aggregation-prone conformations and enhances the local structuring of water around the mutation site that facilitates site-specific dewetting and in-register stacking of tau to form cross ß-sheets. We solve a 3 Å cryo-EM structure of jR2R3-P301L fibrils with a pseudo 2 1 screw symmetry in which each half of the fibril's cross-section contains two jR2R3-P301L peptides. One chain adopts a SLS fold found in 4R tauopathies that is stabilized by a second chain wrapping around the SLS fold, reminiscent of the 3-fold and 4-fold structures observed in 4R tauopathies. These jR2R3-P301L fibrils are able to template full length tau in a prion-like fashion. Significance Statement: This study presents a first step towards designing a tauopathy specific aggregation pathway by engineering a minimal tau prion building block, jR2R3, that can template and propagate distinct disease folds. We present the discovery that P301L-among the widest used mutations in cell and animal models of Alzheimer's Disease-destabilizes an aggregation-prohibiting internal hairpin and enhances the local surface water structure that serves as an entropic hotspot to exert a hyper-localized effect in jR2R3. Our study suggests that P301L may be a more suitable mutation to include in modeling 4R tauopathies than for modelling Alzheimer's Disease, and that mutations are powerful tools for the purpose of designing of tau prion models as therapeutic tools.

4.
Viruses ; 15(9)2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37766319

RESUMEN

Hepatitis B virus (HBV) chronically infects millions of people worldwide, which underscores the importance of discovering and designing novel anti-HBV therapeutics to complement current treatment strategies. An underexploited but attractive therapeutic target is ε, a cis-acting regulatory stem-loop RNA situated within the HBV pregenomic RNA (pgRNA). The binding of ε to the viral polymerase protein (P) is pivotal, as it triggers the packaging of pgRNA and P, as well as the reverse transcription of the viral genome. Consequently, small molecules capable of disrupting this interaction hold the potential to inhibit the early stages of HBV replication. The rational design of such ligands necessitates high-resolution structural information for the ε-P complex or its individual components. While these data are currently unavailable for P, our recent structural elucidation of ε through solution nuclear magnetic resonance spectroscopy marks a significant advancement in this area. In this review, we provide a brief overview of HBV replication and some of the therapeutic strategies to combat chronic HBV infection. These descriptions are intended to contextualize our recent experimental efforts to characterize ε and identify ε-targeting ligands, with the ultimate goal of developing novel anti-HBV therapeutics.


Asunto(s)
Virus de la Hepatitis B , Hepatitis B Crónica , Humanos , Virus de la Hepatitis B/genética , ARN , Replicación Viral , Genoma Viral
5.
bioRxiv ; 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37693456

RESUMEN

Prion-like spread of disease-specific tau conformers is a hallmark of all tauopathies. A 19-residue probe peptide containing a P301L mutation and spanning the R2/R3 splice junction of tau, folds and stacks into seeding-competent fibrils and induces aggregation of 4R, but not 3R tau. These tau peptide fibrils propagate aggregated intracellular tau over multiple generations, have a high ß-sheet content, a colocalized lipid signal, and adopt a well-defined U-shaped fold found in 4R tauopathy brain-derived fibrils. Fully atomistic replica exchange molecular dynamics (MD) simulations were used to compute the free energy landscapes of the conformational ensemble of the peptide monomers. These identified an aggregation-prohibiting ß-hairpin structure and an aggregation-competent U-fold unique to 4R tauopathy fibrils. Guided by MD simulations, we identified that the N-terminal-flanking residues to PHF6, which slightly vary between 4R and 3R isoforms, modulate seeding. Strikingly, when a single amino acid switch at position 305 replaced the serine of 4R tau with a lysine from the corresponding position in the first repeat of 3R tau, the seeding induced by the 19-residue peptide was markedly reduced. Conversely, a 4R tau mimic with three repeats, prepared by replacing those amino acids in the first repeat with those amino acids uniquely present in the second repeat, recovered aggregation when exposed to the 19-residue peptide. These peptide fibrils function as partial prions to recruit naïve 4R tau-ten times the length of the peptide-and serve as a critical template for 4R tauopathy propagation. These results hint at opportunities for tau isoform-specific therapeutic interventions.

6.
J Magn Reson ; 342: 107245, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35908529

RESUMEN

Gerhard Wagner has made numerous contributions to NMR spectroscopy, particularly his developments in the field of spin-relaxation stand out in directly mapping the spectral density functions of proteins. He and his group developed experimental techniques to reveal the importance of dynamics to protein biological function and drug discovery. On his 75th birthday, we take this opportunity to highlight how some of those seminal ideas developed for proteins are being extended to RNAs. The role of dynamics in the structure and function of RNA has been a major interest in drug design and therapeutics. Here we present the use of cross-correlated relaxation rates (ηxy) from anti-TROSY (R2α) and TROSY (R2ß) to rapidly obtain qualitative information about the chemical exchange taking place within the bacterial and human A-site RNA system while reducing the sets of relaxation experiments required to map dynamics. We show that ηxy correlates with the order parameter which gives information on how flexible or rigid a residue is. We further show R2ß/ηxy can rapidly be used to probe chemical exchange as seen from its agreement with Rex. In addition, we report the ability of R2ß/ηxy to determine chemical exchange taking place within the bacterial A-site RNA during structural transitions at pH 6.2 and 6.5. Finally, comparison of the R2ß/ηxy ratios indicates bacterial A-site has greater R2ß/ηxy values for G19 (1.34 s-1), A20 (1.38 s-1), U23 (1.63 s-1) and C24 (1.51 s-1) than human A-site [A19 (0.76 s-1), A20 (1.01 s-1), U23 (0.74 s-1) and C24 (0.71 s-1)]. Taken together, we have shown that the chemical exchange can quickly be analyzed for RNA systems from cross-correlated relaxation rates.


Asunto(s)
Proteínas , ARN , Humanos , Espectroscopía de Resonancia Magnética/métodos , Resonancia Magnética Nuclear Biomolecular/métodos , Proteínas/química
7.
Nat Commun ; 13(1): 3074, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35654899

RESUMEN

The formation of membraneless organelles can be a proteotoxic stress control mechanism that locally condenses a set of components capable of mediating protein degradation decisions. The breadth of mechanisms by which cells respond to stressors and form specific functional types of membraneless organelles, is incompletely understood. We found that Bcl2-associated athanogene 2 (BAG2) marks a distinct phase-separated membraneless organelle, triggered by several forms of stress, particularly hyper-osmotic stress. Distinct from well-known condensates such as stress granules and processing bodies, BAG2-containing granules lack RNA, lack ubiquitin and promote client degradation in a ubiquitin-independent manner via the 20S proteasome. These organelles protect the viability of cells from stress and can traffic to the client protein, in the case of Tau protein, on the microtubule. Components of these ubiquitin-independent degradation organelles include the chaperone HSP-70 and the 20S proteasome activated by members of the PA28 (PMSE) family. BAG2 condensates did not co-localize with LAMP-1 or p62/SQSTM1. When the proteasome is inhibited, BAG2 condensates and the autophagy markers traffic to an aggresome-like structure.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Ubiquitina , Autofagia , Humanos , Chaperonas Moleculares/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Ubiquitina/metabolismo
8.
PLoS Biol ; 20(2): e3001535, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35143475

RESUMEN

m6A methylation is the most abundant and reversible chemical modification on mRNA with approximately one-fourth of eukaryotic mRNAs harboring at least one m6A-modified base. The recruitment of the mRNA m6A methyltransferase writer complex to phase-separated nuclear speckles is likely to be crucial in its regulation; however, control over the activity of the complex remains unclear. Supported by our observation that a core catalytic subunit of the methyltransferase complex, METTL3, is endogenously colocalized within nuclear speckles as well as in noncolocalized puncta, we tracked the components of the complex with a Cry2-METTL3 fusion construct to disentangle key domains and interactions necessary for the phase separation of METTL3. METTL3 is capable of self-interaction and likely provides the multivalency to drive condensation. Condensates in cells necessarily contain myriad components, each with partition coefficients that establish an entropic barrier that can regulate entry into the condensate. In this regard, we found that, in contrast to the constitutive binding of METTL14 to METTL3 in both the diffuse and the dense phase, WTAP only interacts with METTL3 in dense phase and thereby distinguishes METTL3/METTL14 single complexes in the dilute phase from METTL3/METTL14 multicomponent condensates. Finally, control over METTL3/METTL14 condensation is determined by its small molecule cofactor, S-adenosylmethionine (SAM), which regulates conformations of two gate loops, and some cancer-associated mutations near gate loops can impair METTL3 condensation. Therefore, the link between SAM binding and the control of writer complex phase state suggests that the regulation of its phase state is a potentially critical facet of its functional regulation.


Asunto(s)
Núcleo Celular/metabolismo , Metiltransferasas/metabolismo , ARN Mensajero/metabolismo , Dominio Catalítico , Línea Celular Tumoral , Núcleo Celular/genética , Criptocromos/genética , Criptocromos/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Metiltransferasas/química , Metiltransferasas/genética , Microscopía Confocal , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Mutación , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Unión Proteica , ARN Mensajero/genética , S-Adenosilmetionina/metabolismo , Proteína Fluorescente Roja
9.
J Biomol Struct Dyn ; 40(20): 9761-9773, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34155954

RESUMEN

Initiation of protein-primed (-) strand DNA synthesis in hepatitis B virus (HBV) requires interaction of the viral polymerase with a cis-acting regulatory signal, designated epsilon (ε), located at the 5'-end of its pre-genomic RNA (pgRNA). Binding of polymerase to ε is also necessary for pgRNA encapsidation. While the mechanistic basis of this interaction remains elusive, mutagenesis studies suggest its internal 6-nt "priming loop" provides an important structural contribution. ε might therefore be considered a promising target for small molecule interventions to complement current nucleoside-analog based anti-HBV therapies. An ideal prerequisite to any RNA-directed small molecule strategy would be a detailed structural description of this important element. Herein, we present a solution NMR structure for HBV ε which, in combination with molecular dynamics and docking simulations, reports on a flexible ligand "pocket", reminiscent of those observed in proteins. We also demonstrate the binding of the selective estrogen receptor modulators (SERMs) Raloxifene, Bazedoxifene, and a de novo derivative to the priming loop.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Virus de la Hepatitis B , ARN Viral , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/metabolismo , ARN Viral/química , Genómica , Replicación Viral
10.
Protein Sci ; 30(7): 1393-1407, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33955104

RESUMEN

The liquid-liquid phase separation (LLPS) of Tau has been postulated to play a role in modulating the aggregation property of Tau, a process known to be critically associated with the pathology of a broad range of neurodegenerative diseases including Alzheimer's Disease. Tau can undergo LLPS by homotypic interaction through self-coacervation (SC) or by heterotypic association through complex-coacervation (CC) between Tau and binding partners such as RNA. What is unclear is in what way the formation mechanisms for self and complex coacervation of Tau are similar or different, and the addition of a binding partner to Tau alters the properties of LLPS and Tau. A combination of in vitro experimental and computational study reveals that the primary driving force for both Tau CC and SC is electrostatic interactions between Tau-RNA or Tau-Tau macromolecules. The liquid condensates formed by the complex coacervation of Tau and RNA have distinctly higher micro-viscosity and greater thermal stability than that formed by the SC of Tau. Our study shows that subtle changes in solution conditions, including molecular crowding and the presence of binding partners, can lead to the formation of different types of Tau condensates with distinct micro-viscosity that can coexist as persistent and immiscible entities in solution. We speculate that the formation, rheological properties and stability of Tau droplets can be readily tuned by cellular factors, and that liquid condensation of Tau can alter the conformational equilibrium of Tau.


Asunto(s)
Simulación por Computador , Modelos Químicos , Agregado de Proteínas , Proteínas tau/química , Humanos
11.
J Mol Biol ; 433(2): 166731, 2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33279579

RESUMEN

Amyloid aggregation of tau protein is implicated in neurodegenerative diseases, yet its facilitating factors are poorly understood. Recently, tau has been shown to undergo liquid liquid phase separation (LLPS) both in vivo and in vitro. LLPS was shown to facilitate tau amyloid aggregation in certain cases, while being independent of aggregation in other cases. It is therefore important to understand the differentiating properties that resolve this apparent conflict. We report on a model system of hydrophobically driven LLPS induced by high salt concentration (LLPS-HS), and compare it to electrostatically driven LLPS represented by tau-RNA/heparin complex coacervation (LLPS-ED). We show that LLPS-HS promotes tau protein dehydration, undergoes maturation and directly leads to canonical tau fibrils, while LLPS-ED is reversible, remains hydrated and does not promote amyloid aggregation. We show that the nature of the interaction driving tau condensation is a differentiating factor between aggregation-prone and aggregation-independent LLPS.


Asunto(s)
Amiloide/química , Interacciones Hidrofóbicas e Hidrofílicas , Extracción Líquido-Líquido , Proteínas tau/química , Proteínas tau/aislamiento & purificación , Amiloide/metabolismo , Amiloide/ultraestructura , Humanos , Extracción Líquido-Líquido/métodos , Agregado de Proteínas , Agregación Patológica de Proteínas , Análisis Espectral , Proteínas tau/metabolismo
12.
J Biomol NMR ; 71(3): 165-172, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29858959

RESUMEN

Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion NMR experiments are invaluable for probing sparsely and transiently populated biomolecular states that cannot be directly detected by traditional NMR experiments and that are invisible by other biophysical approaches. A notable gap for RNA is the absence of CPMG experiments for measurement of methine base 1H and methylene C5' chemical shifts of ribose moieties in the excited state, partly because of complications from homonuclear 13C-13C scalar couplings. Here we present site-specific 13C labeling that makes possible the design of pulse sequences for recording accurate 1H-13C MQ and SQ CPMG experiments for ribose methine H1'-C1' and H2'-C2', base and ribose 1H CPMG, as well as a new 1H-13C TROSY-detected methylene (CH2) C5' CPMG relaxation pulse schemes. We demonstrate the utility of these experiments for two RNAs, the A-Site RNA known to undergo exchange and the IRE RNA suspected of undergoing exchange on microseconds to millisecond time-scale. We anticipate the new labeling approaches will facilitate obtaining structures of invisible states and provide insights into the relevance of such states for RNA-drug interactions.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular/métodos , ARN/química , Coloración y Etiquetado/métodos , Isótopos de Carbono , Simulación de Dinámica Molecular , Sondas Moleculares/química , Factores de Tiempo
13.
Chemistry ; 24(21): 5462-5468, 2018 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-29412477

RESUMEN

Conformational dynamics of RNA molecules play a critical role in governing their biological functions. Measurements of RNA dynamic behavior sheds important light on sites that interact with their binding partners or cellular stimulators. However, such measurements using solution-state NMR are difficult for large RNA molecules (>70 nt; nt=nucleotides) owing to severe spectral overlap, homonuclear 13 C scalar couplings, and line broadening. Herein, a strategic combination of solid-phase synthesis, site-specific isotopic labeled phosphoramidites, and enzymatic ligation is introduced. This approach allowed the position-specific insertion of isotopic probes into a 96 nt CCR5 RNA fragment. Accurate measurements of functional dynamics using the Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion (RD) experiments enabled extraction of the exchange rates and populations of this RNA. NMR chemical shift perturbation analysis of the RNA/microRNA-1224 complex indicated that A90-C1' of the pseudoknot exhibits similar changes in chemical shift observed in the excited state. This work demonstrates the general applicability of a NMR-labeling strategy to probe functional RNA structural dynamics.


Asunto(s)
MicroARNs/química , Modelos Moleculares , Receptores CCR5/genética , MicroARNs/metabolismo , Resonancia Magnética Nuclear Biomolecular , Técnicas de Síntesis en Fase Sólida
14.
Nucleic Acids Res ; 45(16): e146, 2017 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-28934505

RESUMEN

Although ∼98% of the human genomic output is transcribed as non-protein coding RNA, <2% of the protein data bank structures comprise RNA. This huge structural disparity stems from combined difficulties of crystallizing RNA for X-ray crystallography along with extensive chemical shift overlap and broadened linewidths associated with NMR of RNA. While half of the deposited RNA structures in the PDB were solved by NMR methods, the usefulness of NMR is still limited by the high cost of sample preparation and challenges of resonance assignment. Here we propose a novel strategy for resonance assignment that combines new strategic 13C labeling technologies with filter/edit type NOESY experiments to greatly reduce spectral complexity and crowding. This new strategy allowed us to assign important non-exchangeable resonances of proton and carbon (1', 2', 2, 5, 6 and 8) nuclei using only one sample and <24 h of NMR instrument time for a 27 nt model RNA. The method was further extended to assigning a 6 nt bulge from a 61 nt viral RNA element justifying its use for a wide range RNA chemical shift resonance assignment problems.


Asunto(s)
Marcaje Isotópico/métodos , Resonancia Magnética Nuclear Biomolecular/métodos , ARN/química , Adenina/química , Isótopos de Carbono , Conformación de Ácido Nucleico , Protones , Pirimidinas/química
15.
Methods ; 103: 11-7, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27090003

RESUMEN

Even though Nuclear Magnetic Resonance (NMR) spectroscopy is one of the few techniques capable of determining atomic resolution structures of RNA, it is constrained by two major problems of chemical shift overlap of resonances and rapid signal loss due to line broadening. Emerging tools to tackle these problems include synthesis of atom specifically labeled or chemically modified nucleotides. Herein we review the synthesis of these nucleotides, the design and production of appropriate RNA samples, and the application and analysis of the NMR experiments that take advantage of these labels.


Asunto(s)
ARN/síntesis química , Amidas/química , Secuencia de Bases , Secuencias Invertidas Repetidas , Marcaje Isotópico , Espectroscopía de Resonancia Magnética , Ácidos Fosfóricos/química , Purinas/química , Pirimidinas/química
16.
Nucleic Acids Res ; 44(6): e52, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-26657632

RESUMEN

Stable isotope labeling is central to NMR studies of nucleic acids. Development of methods that incorporate labels at specific atomic positions within each nucleotide promises to expand the size range of RNAs that can be studied by NMR. Using recombinantly expressed enzymes and chemically synthesized ribose and nucleobase, we have developed an inexpensive, rapid chemo-enzymatic method to label ATP and GTP site specifically and in high yields of up to 90%. We incorporated these nucleotides into RNAs with sizes ranging from 27 to 59 nucleotides using in vitro transcription: A-Site (27 nt), the iron responsive elements (29 nt), a fluoride riboswitch from Bacillus anthracis(48 nt), and a frame-shifting element from a human corona virus (59 nt). Finally, we showcase the improvement in spectral quality arising from reduced crowding and narrowed linewidths, and accurate analysis of NMR relaxation dispersion (CPMG) and TROSY-based CEST experiments to measure µs-ms time scale motions, and an improved NOESY strategy for resonance assignment. Applications of this selective labeling technology promises to reduce difficulties associated with chemical shift overlap and rapid signal decay that have made it challenging to study the structure and dynamics of large RNAs beyond the 50 nt median size found in the PDB.


Asunto(s)
Adenosina Trifosfato/síntesis química , Guanosina Trifosfato/síntesis química , Marcaje Isotópico/métodos , Nucleótidos/síntesis química , Bacillus anthracis/química , Bacillus anthracis/genética , Isótopos de Carbono , Coronavirus Humano 229E/química , Coronavirus Humano 229E/genética , Creatina Quinasa/química , Creatina Quinasa/genética , Espectroscopía de Resonancia Magnética , Pentosiltransferasa/química , Pentosiltransferasa/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Elementos de Respuesta , Ribosa/química , Ribosa-Fosfato Pirofosfoquinasa/química , Ribosa-Fosfato Pirofosfoquinasa/genética , Riboswitch , Transcripción Genética
17.
Methods Enzymol ; 565: 461-94, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26577742

RESUMEN

Given that Ribonucleic acids (RNAs) are a central hub of various cellular processes, methods to synthesize these RNAs for biophysical studies are much needed. Here, we showcase the applicability of 6-(13)C-pyrimidine phosphoramidites to introduce isolated (13)C-(1)H spin pairs into RNAs up to 40 nucleotides long. The method allows the incorporation of 6-(13)C-uridine and -cytidine residues at any desired position within a target RNA. By site-specific positioning of the (13)C-label using RNA solid phase synthesis, these stable isotope-labeling patterns are especially well suited to resolve resonance assignment ambiguities. Of even greater importance, the labeling pattern affords accurate quantification of important functional transitions of biologically relevant RNAs (e.g., riboswitch aptamer domains, viral RNAs, or ribozymes) in the µs- to ms time regime and beyond without complications of one bond carbon scalar couplings. We outline the chemical synthesis of the 6-(13)C-pyrimidine building blocks and their use in RNA solid phase synthesis and demonstrate their utility in Carr Purcell Meiboom Gill relaxation dispersion, ZZ exchange, and chemical exchange saturation transfer NMR experiments.


Asunto(s)
Marcaje Isotópico , Resonancia Magnética Nuclear Biomolecular/métodos , Compuestos Organofosforados/química , ARN/química
18.
Methods Enzymol ; 549: 133-62, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25432748

RESUMEN

RNAs are an important class of cellular regulatory elements, and they are well characterized by X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy in their folded or bound states. However, the apo or unfolded states are more difficult to characterize by either method. Particularly, effective NMR spectroscopy studies of RNAs in the past were hampered by chemical shift overlap of resonances and associated rapid signal loss due to line broadening for RNAs larger than the median size found in the PDB (~25 nt); most functional riboswitches are bigger than this median size. Incorporation of selective site-specific (13)C/(15)N-labeled nucleotides into RNAs promises to overcome this NMR size limitation. Unlike previous isotopic enrichment methods such as phosphoramidite, de novo, uniform-labeling, and selective-biomass approaches, this newer chemical-enzymatic selective method presents a number of advantages for producing labeled nucleotides over these other methods. For example, total chemical synthesis of nucleotides, followed by solid-phase synthesis of RNA using phosphoramidite chemistry, while versatile in incorporating isotope labels into RNA at any desired position, faces problems of low yields (<10%) that drop precipitously for oligonucleotides larger than 50 nt. The alternative method of de novo pyrimidine biosynthesis of NTPs is also a robust technique, with modest yields of up to 45%, but it comes at the cost of using 16 enzymes, expensive substrates, and difficulty in making some needed labeling patterns such as selective labeling of the ribose C1' and C5' and the pyrimidine nucleobase C2, C4, C5, or C6. Biomass-produced, uniformly or selectively labeled NTPs offer a third method, but suffer from low overall yield per labeled input metabolite and isotopic scrambling with only modest suppression of (13)C-(13)C couplings. In contrast to these four methods, our current chemo-enzymatic approach overcomes most of these shortcomings and allows for the synthesis of gram quantities of nucleotides with >80% yields while using a limited number of enzymes, six at most. The unavailability of selectively labeled ribose and base precursors had prevented the effective use of this versatile method until now. Recently, we combined an improved organic synthetic approach that selectively places (13)C/(15)N labels in the pyrimidine nucleobase (either (15)N1, (15)N3, (13)C2, (13)C4, (13)C5, or (13)C6 or any combination) with a very efficient enzymatic method to couple ribose with uracil to produce previously unattainable labeling patterns (Alvarado et al., 2014). Herein we provide detailed steps of both our chemo-enzymatic synthesis of custom nucleotides and their incorporation into RNAs with sizes ranging from 29 to 155 nt and showcase the dramatic improvement in spectral quality of reduced crowding and narrow linewidths. Applications of this selective labeling technology should prove valuable in overcoming two major obstacles, chemical shift overlap of resonances and associated rapid signal loss due to line broadening, that have impeded studying the structure and dynamics of large RNAs such as full-length riboswitches larger than the ~25 nt median size of RNA NMR structures found in the PDB.


Asunto(s)
Citidina Trifosfato/química , Resonancia Magnética Nuclear Biomolecular/métodos , ARN/química , Uracilo/química , Uridina Trifosfato/química , Isótopos de Carbono/síntesis química , Isótopos de Carbono/química , Citidina Trifosfato/síntesis química , Isótopos de Nitrógeno/síntesis química , Isótopos de Nitrógeno/química , ARN/síntesis química , ARN/genética , Transcripción Genética , Uracilo/síntesis química , Uridina Trifosfato/síntesis química
19.
Chembiochem ; 15(11): 1573-7, 2014 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-24954297

RESUMEN

Isotope labeling has revolutionized NMR studies of small nucleic acids, but to extend this technology to larger RNAs, site-specific labeling tools to expedite NMR structural and dynamics studies are required. Using enzymes from the pentose phosphate pathway, we coupled chemically synthesized uracil nucleobase with specifically (13) C-labeled ribose to synthesize both UTP and CTP in nearly quantitative yields. This chemoenzymatic method affords a cost-effective preparation of labels that are unattainable by current methods. The methodology generates versatile (13) C and (15) N labeling patterns which, when employed with relaxation-optimized NMR spectroscopy, effectively mitigate problems of rapid relaxation that result in low resolution and sensitivity. The methodology is demonstrated with RNAs of various sizes, complexity, and function: the exon splicing silencer 3 (27 nt), iron responsive element (29 nt), Pro-tRNA (76 nt), and HIV-1 core encapsidation signal (155 nt).


Asunto(s)
Simulación de Dinámica Molecular , Nucleótidos de Pirimidina/biosíntesis , ARN/química , Resonancia Magnética Nuclear Biomolecular , Nucleótidos de Pirimidina/química , ARN/metabolismo , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...