Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
bioRxiv ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39229105

RESUMEN

Drug resistance is the major cause of therapeutic failure in high-grade serous ovarian cancer (HGSOC). Yet, the mechanisms by which tumors evolve to drug resistant states remains largely unknown. To address this, we aimed to exploit clone-specific genomic structural variations by combining scaled single-cell whole genome sequencing with longitudinally collected cell-free DNA (cfDNA), enabling clonal tracking before, during and after treatment. We developed a cfDNA hybrid capture, deep sequencing approach based on leveraging clone-specific structural variants as endogenous barcodes, with orders of magnitude lower error rates than single nucleotide variants in ctDNA (circulating tumor DNA) detection, demonstrated on 19 patients at baseline. We then applied this to monitor and model clonal evolution over several years in ten HGSOC patients treated with systemic therapy from diagnosis through recurrence. We found drug resistance to be polyclonal in most cases, but frequently dominated by a single high-fitness and expanding clone, reducing clonal diversity in the relapsed disease state in most patients. Drug-resistant clones frequently displayed notable genomic features, including high-level amplifications of oncogenes such as CCNE1, RAB25, NOTCH3, and ERBB2. Using a population genetics Wright-Fisher model, we found evolutionary trajectories of these features were consistent with drug-induced positive selection. In select cases, these alterations impacted selection of secondary lines of therapy with positive patient outcomes. For cases with matched single-cell RNA sequencing data, pre-existing and genomically encoded phenotypic states such as upregulation of EMT and VEGF were linked to drug resistance. Together, our findings indicate that drug resistant states in HGSOC pre-exist at diagnosis and lead to dramatic clonal expansions that alter clonal composition at the time of relapse. We suggest that combining tumor single cell sequencing with cfDNA enables clonal tracking in patients and harbors potential for evolution-informed adaptive treatment decisions.

2.
J Clin Oncol ; 42(28): 3339-3349, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39038258

RESUMEN

PURPOSEThe impact of the intratumoral microbiome on immune checkpoint inhibitor (ICI) efficacy in patients with non-small-cell lung cancer (NSCLC) is unknown. Preclinically, intratumoral Escherichia is associated with a proinflammatory tumor microenvironment and decreased metastases. We sought to determine whether intratumoral Escherichia is associated with outcome to ICI in patients with NSCLC.PATIENTS AND METHODSWe examined the intratumoral microbiome in 958 patients with advanced NSCLC treated with ICI by querying unmapped next-generation sequencing reads against a bacterial genome database. Putative environmental contaminants were filtered using no-template controls (n = 2,378). The impact of intratumoral Escherichia detection on overall survival (OS) was assessed using univariable and multivariable analyses. The findings were further validated in an external independent cohort of 772 patients. Escherichia fluorescence in situ hybridization (FISH) and transcriptomic profiling were performed.RESULTSIn the discovery cohort, read mapping to intratumoral Escherichia was associated with significantly longer OS (16 v 11 months; hazard ratio, 0.73 [95% CI, 0.59 to 0.92]; P = .0065) in patients treated with single-agent ICI, but not combination chemoimmunotherapy. The association with OS in the single-agent ICI cohort remained statistically significant in multivariable analysis adjusting for prognostic features including PD-L1 expression (P = .023). Analysis of an external validation cohort confirmed the association with improved OS in univariable and multivariable analyses of patients treated with single-agent ICI, and not in patients treated with chemoimmunotherapy. Escherichia localization within tumor cells was supported by coregistration of FISH staining and serial hematoxylin and eosin sections. Transcriptomic analysis correlated Escherichia-positive samples with expression signatures of immune cell infiltration.CONCLUSIONRead mapping to potential intratumoral Escherichia was associated with survival to single-agent ICI in two independent cohorts of patients with NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Inhibidores de Puntos de Control Inmunológico , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/microbiología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Femenino , Masculino , Anciano , Persona de Mediana Edad , Microambiente Tumoral/inmunología , Anciano de 80 o más Años
3.
Cancer Cell ; 41(4): 776-790.e7, 2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-37001526

RESUMEN

Paired single-cell RNA and T cell receptor sequencing (scRNA/TCR-seq) has allowed for enhanced resolution of clonal T cell dynamics in cancer. Here, we report a scRNA/TCR-seq analysis of 187,650 T cells from 31 tissue regions, including tumor, adjacent normal tissues, and lymph nodes (LN), from three patients with non-small cell lung cancer after immune checkpoint blockade (ICB). Regions with viable cancer cells are enriched for exhausted CD8+ T cells, regulatory CD4+ T cells (Treg), and follicular helper CD4+ T cells (TFH). Tracking T cell clonotypes across tissues, combined with neoantigen specificity assays, reveals that TFH and tumor-specific exhausted CD8+ T cells are clonally linked to TCF7+SELL+ progenitors in tumor draining LNs, and progressive exhaustion trajectories of CD8+ T, Treg, and TFH cells with proximity to the tumor microenvironment. Finally, longitudinal tracking of tumor-specific CD8+ and CD4+ T cell clones reveals persistence in the peripheral blood for years after ICB therapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Linfocitos T CD8-positivos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Receptores de Antígenos de Linfocitos T , Células Clonales , Microambiente Tumoral
4.
NPJ Breast Cancer ; 8(1): 96, 2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-35999225

RESUMEN

Estrogen receptor alpha (ERα) drives mammary gland development and breast cancer (BC) growth through an evolutionarily conserved linkage of DNA binding and hormone activation functions. Therapeutic targeting of the hormone binding pocket is a widely utilized and successful strategy for breast cancer prevention and treatment. However, resistance to this endocrine therapy is frequently encountered and may occur through bypass or reactivation of ER-regulated transcriptional programs. We now identify the induction of an ERα isoform, ERα-LBD, that is encoded by an alternative ESR1 transcript and lacks the activation function and DNA binding domains. Despite lacking the transcriptional activity, ERα-LBD is found to promote breast cancer growth and resistance to the ERα antagonist fulvestrant. ERα-LBD is predominantly localized to the cytoplasm and mitochondria of BC cells and leads to enhanced glycolysis, respiration and stem-like features. Intriguingly, ERα-LBD expression and function does not appear to be restricted to cancers that express full length ERα but also promotes growth of triple-negative breast cancers and ERα-LBD transcript (ESR1-LBD) is also present in BC samples from both ERα(+) and ERα(-) human tumors. These findings point to ERα-LBD as a potential mediator of breast cancer progression and therapy resistance.

5.
Nature ; 599(7886): 679-683, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34759319

RESUMEN

Inactive state-selective KRAS(G12C) inhibitors1-8 demonstrate a 30-40% response rate and result in approximately 6-month median progression-free survival in patients with lung cancer9. The genetic basis for resistance to these first-in-class mutant GTPase inhibitors remains under investigation. Here we evaluated matched pre-treatment and post-treatment specimens from 43 patients treated with the KRAS(G12C) inhibitor sotorasib. Multiple treatment-emergent alterations were observed across 27 patients, including alterations in KRAS, NRAS, BRAF, EGFR, FGFR2, MYC and other genes. In preclinical patient-derived xenograft and cell line models, resistance to KRAS(G12C) inhibition was associated with low allele frequency hotspot mutations in KRAS(G12V or G13D), NRAS(Q61K or G13R), MRAS(Q71R) and/or BRAF(G596R), mirroring observations in patients. Single-cell sequencing in an isogenic lineage identified secondary RAS and/or BRAF mutations in the same cells as KRAS(G12C), where they bypassed inhibition without affecting target inactivation. Genetic or pharmacological targeting of ERK signalling intermediates enhanced the antiproliferative effect of G12C inhibitor treatment in models with acquired RAS or BRAF mutations. Our study thus suggests a heterogenous pattern of resistance with multiple subclonal events emerging during G12C inhibitor treatment. A subset of patients in our cohort acquired oncogenic KRAS, NRAS or BRAF mutations, and resistance in this setting may be delayed by co-targeting of ERK signalling intermediates. These findings merit broader evaluation in prospective clinical trials.


Asunto(s)
Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Resistencia a Antineoplásicos/genética , Mutación , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/genética , Acetonitrilos/farmacología , Animales , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular , Estudios de Cohortes , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Piperazinas/farmacología , Piperazinas/uso terapéutico , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Piridinas/farmacología , Piridinas/uso terapéutico , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto
6.
J Hematol Oncol ; 14(1): 170, 2021 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-34656143

RESUMEN

BACKGROUND: Lineage plasticity, the ability to transdifferentiate among distinct phenotypic identities, facilitates therapeutic resistance in cancer. In lung adenocarcinomas (LUADs), this phenomenon includes small cell and squamous cell (LUSC) histologic transformation in the context of acquired resistance to targeted inhibition of driver mutations. LUAD-to-LUSC transdifferentiation, occurring in up to 9% of EGFR-mutant patients relapsed on osimertinib, is associated with notably poor prognosis. We hypothesized that multi-parameter profiling of the components of mixed histology (LUAD/LUSC) tumors could provide insight into factors licensing lineage plasticity between these histologies. METHODS: We performed genomic, epigenomics, transcriptomics and protein analyses of microdissected LUAD and LUSC components from mixed histology tumors, pre-/post-transformation tumors and reference non-transformed LUAD and LUSC samples. We validated our findings through genetic manipulation of preclinical models in vitro and in vivo and performed patient-derived xenograft (PDX) treatments to validate potential therapeutic targets in a LUAD PDX model acquiring LUSC features after osimertinib treatment. RESULTS: Our data suggest that LUSC transdifferentiation is primarily driven by transcriptional reprogramming rather than mutational events. We observed consistent relative upregulation of PI3K/AKT, MYC and PRC2 pathway genes. Concurrent activation of PI3K/AKT and MYC induced squamous features in EGFR-mutant LUAD preclinical models. Pharmacologic inhibition of EZH1/2 in combination with osimertinib prevented relapse with squamous-features in an EGFR-mutant patient-derived xenograft model, and inhibition of EZH1/2 or PI3K/AKT signaling re-sensitized resistant squamous-like tumors to osimertinib. CONCLUSIONS: Our findings provide the first comprehensive molecular characterization of LUSC transdifferentiation, suggesting putative drivers and potential therapeutic targets to constrain or prevent lineage plasticity.


Asunto(s)
Adenocarcinoma del Pulmón/patología , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Células Escamosas/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , Animales , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Transdiferenciación Celular , Humanos , Ratones Endogámicos NOD , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-myc/genética , Transducción de Señal , Transcriptoma
7.
Artículo en Inglés | MEDLINE | ID: mdl-34250397

RESUMEN

PURPOSE: Cell-free DNA (cfDNA) analysis offers a noninvasive means to access the tumor genome. Despite limited sensitivity of broad-panel sequencing for detecting low-frequency mutations in cfDNA, it may enable more comprehensive genomic characterization in patients with sufficiently high disease burden. We investigated the utility of large-panel cfDNA sequencing in patients enrolled to a Phase I AKT1-mutant solid tumor basket study. METHODS: Patients had AKT1 E17K-mutant solid tumors and were treated on the multicenter basket study (ClinicalTrials.gov identifier: NCT01226316) of capivasertib, an AKT inhibitor. Serial plasma samples were prospectively collected and sequenced using exon-capture next-generation sequencing (NGS) analysis of 410 genes (Memorial Sloan Kettering [MSK]-Integrated Molecular Profiling of Actionable Cancer Target [IMPACT]) and allele-specific droplet digital polymerase chain reaction (ddPCR) for AKT1 E17K. Tumor DNA (tDNA) NGS (MSK-IMPACT) was also performed on available pretreatment tissue biopsy specimens. RESULTS: Among 25 patients, pretreatment plasma samples were sequenced to an average coverage of 504×. Somatic mutations were called in 20/25 (80%), with mutant allele fractions highly concordant with ddPCR of AKT1 E17K (r 2 = 0.976). Among 17 of 20 cfDNA-positive patients with available tDNA for comparison, mutational concordance was acceptable, with 82% of recurrent mutations shared between tissue and plasma. cfDNA NGS captured additional tumor heterogeneity, identifying mutations not observed in tDNA in 38% of patients, and revealed oncogenic mutations in patients without available baseline tDNA. Longitudinal cfDNA NGS (n = 98 samples) revealed distinct patterns of clonal dynamics in response to therapy. CONCLUSION: Large gene panel cfDNA NGS is feasible for patients with high disease burden and is concordant with single-analyte approaches, providing a robust alternative to ddPCR with greater breadth. cfDNA NGS can identify heterogeneity and potentially biologically informative and clinically relevant alterations.


Asunto(s)
ADN Tumoral Circulante/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mutación , Neoplasias/genética , Genoma , Humanos , Estudios Prospectivos
8.
Artículo en Inglés | MEDLINE | ID: mdl-34250419

RESUMEN

PURPOSE: Fibroblast growth factor receptor (FGFR) 2 alterations, present in 5%-15% of intrahepatic cholangiocarcinomas (IHC), are targets of FGFR-directed therapies. Acquired resistance is common among patients who respond. Biopsies at the time of acquired resistance to targeted agents may not always be feasible and may not capture the genetic heterogeneity that could exist within a patient. We studied circulating tumor DNA (ctDNA) as a less invasive means of potentially identifying genomic mechanisms of resistance to FGFR-targeted therapies. MATERIALS AND METHODS: Serial blood samples were collected from eight patients with FGFR-altered cholangiocarcinoma for ctDNA isolation and next-generation sequencing (NGS) throughout treatment and at resistance to anti-FGFR-targeted therapy. ctDNA was sequenced using a custom ultra-deep coverage NGS panel, incorporating dual index primers and unique molecular barcodes to enable high-sensitivity mutation detection. RESULTS: Thirty-one acquired mutations in FGFR2, 30/31 located in the kinase domain, were identified at resistance in six of eight patients with detectable ctDNA. Up to 13 independent FGFR2 mutations were detected per patient, indicative of striking genomic concordance among resistant subclones. CONCLUSION: ctDNA could be an effective means to longitudinally monitor for acquired resistance in FGFR2-altered IHC. The numerous acquired genetic alterations in FGFR2 suggest frequent polyclonal mechanisms of resistance that cannot be detected from single-site tissue biopsies.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias de los Conductos Biliares/sangre , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Neoplasias de los Conductos Biliares/genética , Conductos Biliares Intrahepáticos , Colangiocarcinoma/sangre , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/genética , ADN Tumoral Circulante/sangre , Resistencia a Antineoplásicos/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/antagonistas & inhibidores , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Humanos , Mutación
9.
Genome Med ; 13(1): 96, 2021 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-34059130

RESUMEN

BACKGROUND: Cell-free DNA (cfDNA) profiling is increasingly used to guide cancer care, yet mutations are not always identified. The ability to detect somatic mutations in plasma depends on both assay sensitivity and the fraction of circulating DNA in plasma that is tumor-derived (i.e., cfDNA tumor fraction). We hypothesized that cfDNA tumor fraction could inform the interpretation of negative cfDNA results and guide the choice of subsequent assays of greater genomic breadth or depth. METHODS: Plasma samples collected from 118 metastatic cancer patients were analyzed with cf-IMPACT, a modified version of the FDA-authorized MSK-IMPACT tumor test that can detect genomic alterations in 410 cancer-associated genes. Shallow whole genome sequencing (sWGS) was also performed in the same samples to estimate cfDNA tumor fraction based on genome-wide copy number alterations using z-score statistics. Plasma samples with no somatic alterations detected by cf-IMPACT were triaged based on sWGS-estimated tumor fraction for analysis with either a less comprehensive but more sensitive assay (MSK-ACCESS) or broader whole exome sequencing (WES). RESULTS: cfDNA profiling using cf-IMPACT identified somatic mutations in 55/76 (72%) patients for whom MSK-IMPACT tumor profiling data were available. A significantly higher concordance of mutational profiles and tumor mutational burden (TMB) was observed between plasma and tumor profiling for plasma samples with a high tumor fraction (z-score≥5). In the 42 patients from whom tumor data was not available, cf-IMPACT identified mutations in 16/42 (38%). In total, cf-IMPACT analysis of plasma revealed mutations in 71/118 (60%) patients, with clinically actionable alterations identified in 30 (25%), including therapeutic targets of FDA-approved drugs. Of the 47 samples without alterations detected and low tumor fraction (z-score<5), 29 had sufficient material to be re-analyzed using a less comprehensive but more sensitive assay, MSK-ACCESS, which revealed somatic mutations in 14/29 (48%). Conversely, 5 patients without alterations detected by cf-IMPACT and with high tumor fraction (z-score≥5) were analyzed by WES, which identified mutational signatures and alterations in potential oncogenic drivers not covered by the cf-IMPACT panel. Overall, we identified mutations in 90/118 (76%) patients in the entire cohort using the three complementary plasma profiling approaches. CONCLUSIONS: cfDNA tumor fraction can inform the interpretation of negative cfDNA results and guide the selection of subsequent sequencing platforms that are most likely to identify clinically-relevant genomic alterations.


Asunto(s)
Biomarcadores de Tumor , ADN Tumoral Circulante , Biopsia Líquida/métodos , Neoplasias/diagnóstico , Neoplasias/genética , Variaciones en el Número de Copia de ADN , Genómica/métodos , Humanos , Mutación , Curva ROC , Secuenciación del Exoma , Secuenciación Completa del Genoma
10.
Cancer Discov ; 11(12): 3028-3047, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34155000

RESUMEN

Lineage plasticity is implicated in treatment resistance in multiple cancers. In lung adenocarcinomas (LUAD) amenable to targeted therapy, transformation to small cell lung cancer (SCLC) is a recognized resistance mechanism. Defining molecular mechanisms of neuroendocrine (NE) transformation in lung cancer has been limited by a paucity of pre/posttransformation clinical samples. Detailed genomic, epigenomic, transcriptomic, and protein characterization of combined LUAD/SCLC tumors, as well as pre/posttransformation samples, supports that NE transformation is primarily driven by transcriptional reprogramming rather than mutational events. We identify genomic contexts in which NE transformation is favored, including frequent loss of the 3p chromosome arm. We observed enhanced expression of genes involved in the PRC2 complex and PI3K/AKT and NOTCH pathways. Pharmacologic inhibition of the PI3K/AKT pathway delayed tumor growth and NE transformation in an EGFR-mutant patient-derived xenograft model. Our findings define a novel landscape of potential drivers and therapeutic vulnerabilities of NE transformation in lung cancer. SIGNIFICANCE: The difficulty in collection of transformation samples has precluded the performance of molecular analyses, and thus little is known about the lineage plasticity mechanisms leading to LUAD-to-SCLC transformation. Here, we describe biological pathways dysregulated upon transformation and identify potential predictors and potential therapeutic vulnerabilities of NE transformation in the lung. See related commentary by Meador and Lovly, p. 2962. This article is highlighted in the In This Issue feature, p. 2945.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Tumores Neuroendocrinos , Carcinoma Pulmonar de Células Pequeñas , Adenocarcinoma del Pulmón/tratamiento farmacológico , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Mutación , Tumores Neuroendocrinos/genética , Tumores Neuroendocrinos/patología , Fosfatidilinositol 3-Quinasas/genética , Carcinoma Pulmonar de Células Pequeñas/patología
11.
Clin Cancer Res ; 27(14): 4066-4076, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-33947695

RESUMEN

PURPOSE: Invasive mucinous adenocarcinoma (IMA) is a unique subtype of lung adenocarcinoma, characterized genomically by frequent KRAS mutations or specific gene fusions, most commonly involving NRG1. Comprehensive analysis of a large series of IMAs using broad DNA- and RNA-sequencing methods is still lacking, and it remains unclear whether molecular subtypes of IMA differ clinicopathologically. EXPERIMENTAL DESIGN: A total of 200 IMAs were analyzed by 410-gene DNA next-generation sequencing (MSK-IMPACT; n = 136) or hotspot 8-oncogene genotyping (n = 64). Driver-negative cases were further analyzed by 62-gene RNA sequencing (MSK-Fusion) and those lacking fusions were further tested by whole-exome sequencing and whole-transcriptome sequencing (WTS). RESULTS: Combined MSK-IMPACT and MSK-Fusion testing identified mutually exclusive driver alterations in 96% of IMAs, including KRAS mutations (76%), NRG1 fusions (7%), ERBB2 alterations (6%), and other less common events. In addition, WTS identified a novel NRG2 fusion (F11R-NRG2). Overall, targetable gene fusions were identified in 51% of KRAS wild-type IMAs, leading to durable responses to targeted therapy in some patients. Compared with KRAS-mutant IMAs, NRG1-rearranged tumors exhibited several more aggressive characteristics, including worse recurrence-free survival (P < 0.0001). CONCLUSIONS: This is the largest molecular study of IMAs to date, where we demonstrate the presence of a major oncogenic driver in nearly all cases. This study is the first to document more aggressive characteristics of NRG1-rearranged IMAs, ERBB2 as the third most common alteration, and a novel NRG2 fusion in these tumors. Comprehensive molecular testing of KRAS wild-type IMAs that includes fusion testing is essential, given the high prevalence of alterations with established and investigational targeted therapies in this subset.


Asunto(s)
Adenocarcinoma Mucinoso/clasificación , Adenocarcinoma Mucinoso/genética , Neoplasias Pulmonares/clasificación , Neoplasias Pulmonares/genética , Adenocarcinoma Mucinoso/patología , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Mutación , Invasividad Neoplásica
12.
J Appl Lab Med ; 5(4): 788-797, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32603443

RESUMEN

BACKGROUND: Cell-free DNA (cfDNA) analysis using peripheral blood represents an exciting, minimally invasive technology for cancer diagnosis and monitoring. The reliability of testing is dependent on the accuracy and sensitivity of specific molecular analyses to detect tumor-associated genomic variants and on the quantity and quality of cfDNA available for testing. Specific guidelines for standardization and design of appropriate quality programs focused specifically on cfDNA isolation are lacking, as are standardized quality control reagents. CONTENT: This report describes and illustrates quality control and quality assurance processes, supported by generation of in-house quality control material, to ensure the reliability of the preanalytical phase of cfDNA analysis. SUMMARY: We have developed a robust quality program to support high-volume automated cfDNA extraction from peripheral blood by implementing processes and procedures designed to monitor the adequacy of specimen collection, specimen stability, efficiency of cfDNA extraction, and cfDNA quality.


Asunto(s)
Recolección de Muestras de Sangre/normas , ADN Tumoral Circulante/aislamiento & purificación , Servicios de Laboratorio Clínico/normas , Guías como Asunto , Neoplasias/diagnóstico , ADN Tumoral Circulante/genética , Servicios de Laboratorio Clínico/organización & administración , Análisis Mutacional de ADN , Humanos , Mutación , Neoplasias/sangre , Neoplasias/genética , Control de Calidad , Mejoramiento de la Calidad , Reproducibilidad de los Resultados
13.
Nat Med ; 26(7): 1114-1124, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32483360

RESUMEN

In many areas of oncology, we lack sensitive tools to track low-burden disease. Although cell-free DNA (cfDNA) shows promise in detecting cancer mutations, we found that the combination of low tumor fraction (TF) and limited number of DNA fragments restricts low-disease-burden monitoring through the prevailing deep targeted sequencing paradigm. We reasoned that breadth may supplant depth of sequencing to overcome the barrier of cfDNA abundance. Whole-genome sequencing (WGS) of cfDNA allowed ultra-sensitive detection, capitalizing on the cumulative signal of thousands of somatic mutations observed in solid malignancies, with TF detection sensitivity as low as 10-5. The WGS approach enabled dynamic tumor burden tracking and postoperative residual disease detection, associated with adverse outcome. Thus, we present an orthogonal framework for cfDNA cancer monitoring via genome-wide mutational integration, enabling ultra-sensitive detection, overcoming the limitation of cfDNA abundance and empowering treatment optimization in low-disease-burden oncology care.


Asunto(s)
Biomarcadores de Tumor/genética , ADN Tumoral Circulante/sangre , ADN de Neoplasias/genética , Neoplasias/sangre , Biomarcadores de Tumor/sangre , Ácidos Nucleicos Libres de Células/sangre , Variaciones en el Número de Copia de ADN/genética , ADN de Neoplasias/sangre , Supervivencia sin Enfermedad , Femenino , Genoma Humano/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Estimación de Kaplan-Meier , Masculino , Mutación/genética , Neoplasias/genética , Neoplasias/patología , Carga Tumoral/genética , Secuenciación Completa del Genoma
14.
JAMA Oncol ; 6(7): 1048-1054, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32463456

RESUMEN

Importance: The combination of erlotinib and bevacizumab as initial treatment of epidermal growth factor receptor (EGFR [OMIM 131550])-mutant lung cancers improves progression-free survival (PFS) compared with erlotinib alone. Because osimertinib prolongs PFS compared with erlotinib, this trial was designed to study the combination of osimertinib and bevacizumab as first-line treatment. Objectives: To determine the safety and tolerability of osimertinib and bevacizumab combination treatment and assess the 12-month PFS of the combination in patients with metastatic EGFR-mutant lung cancers. Design, Setting, and Particiants: From August 15, 2016, to May 15, 2018, 49 patients with metastatic EGFR-mutant lung cancers were enrolled in this interventional clinical trial, conducted at a single academic cancer center. In the phase 1 portion of the study, a standard 3 + 3 dose de-escalation design was used to determine the maximum tolerated dose of osimertinib and bevacizumab. In the phase 2 portion of the study, patients were treated at the maximum tolerated dose defined in the phase 1 portion. Statistical analysis was performed from August 1 to October 1, 2019. Interventions: All patients received osimertinib, 80 mg daily, and bevacizumab, 15 mg/kg once every 3 weeks. Main Outcomes and Measures: The primary objective of the phase 2 portion of the study was to determine the number of patients receiving the combination of osimertinib and bevacizumab who were progression free at 12 months. Secondary end points included overall response rate, median PFS, overall survival, and definition of the toxic effects of the combination treatment. Results: Among the 49 patients in the study (34 women; median age, 60 years [range, 36-83 years]), PFS at 12 months was 76% (95% CI, 65%-90%). The overall response rate was 80% (95% CI, 67%-91%), and median PFS was 19 months (95% CI, 15-24 months). Of the 6 patients with measurable central nervous system disease, all had a partial or complete central nervous system response. Persistent detection of EGFR-mutant circulating tumor (ct)DNA at 6 weeks was associated with shorter median PFS (clearance at 6 weeks, 16.2 months [95% CI, 13 months to not reached]; and no clearance at 6 weeks, 9.8 months [95% CI, 4 months to not reached]; P = .04) and median overall survival (clearance at 6 weeks, not reached; and no clearance at 6 weeks, 10.1 months [95% CI, 6 months to not reached]; P = .002). Identified mechanisms of resistance included squamous cell transformation (n = 2) pleomorphic transformation (n = 1), and acquired EGFR L718Q (n = 1) and C797S (n = 1) mutations. Conclusions and Relevance: The combination of osimertinib and bevacizumab met the study's prespecified effectiveness end point. Persistent EGFR-mutant circulating tumor DNA at 6 weeks was associated with early progression and shorter survival. A randomized phase 3 study comparing osimertinib and bevacizumab with osimertinib alone is planned. Trial Registration: ClinicalTrials.gov Identifier: NCT02803203.


Asunto(s)
Acrilamidas/uso terapéutico , Inhibidores de la Angiogénesis/uso terapéutico , Compuestos de Anilina/uso terapéutico , Antineoplásicos Inmunológicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Bevacizumab/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Adulto , Anciano , Anciano de 80 o más Años , ADN Tumoral Circulante/sangre , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Femenino , Humanos , Neoplasias Pulmonares/genética , Masculino , Persona de Mediana Edad , Mutación , Supervivencia sin Progresión
15.
Nat Med ; 25(9): 1422-1427, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31406350

RESUMEN

TRK fusions are found in a variety of cancer types, lead to oncogenic addiction, and strongly predict tumor-agnostic efficacy of TRK inhibition1-8. With the recent approval of the first selective TRK inhibitor, larotrectinib, for patients with any TRK-fusion-positive adult or pediatric solid tumor, to identify mechanisms of treatment failure after initial response has become of immediate therapeutic relevance. So far, the only known resistance mechanism is the acquisition of on-target TRK kinase domain mutations, which interfere with drug binding and can potentially be addressable through second-generation TRK inhibitors9-11. Here, we report off-target resistance in patients treated with TRK inhibitors and in patient-derived models, mediated by genomic alterations that converge to activate the mitogen-activated protein kinase (MAPK) pathway. MAPK pathway-directed targeted therapy, administered alone or in combination with TRK inhibition, re-established disease control. Experimental modeling further suggests that upfront dual inhibition of TRK and MEK may delay time to progression in cancer types prone to the genomic acquisition of MAPK pathway-activating alterations. Collectively, these data suggest that a subset of patients will develop off-target mechanisms of resistance to TRK inhibition with potential implications for clinical management and future clinical trial design.


Asunto(s)
Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Proteínas de Fusión Oncogénica/genética , Receptor trkA/genética , Adolescente , Adulto , Animales , Benzamidas/administración & dosificación , Proliferación Celular/efectos de los fármacos , Ácidos Nucleicos Libres de Células/efectos de los fármacos , Ácidos Nucleicos Libres de Células/genética , Niño , Ensayos Clínicos como Asunto , Resistencia a Antineoplásicos/genética , Femenino , Xenoinjertos , Humanos , Imidazoles/administración & dosificación , Indazoles/administración & dosificación , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Terapia Molecular Dirigida , Neoplasias/genética , Neoplasias/patología , Oximas/administración & dosificación , Inhibidores de Proteínas Quinasas/administración & dosificación , Pirazoles/administración & dosificación , Piridonas/administración & dosificación , Pirimidinas/administración & dosificación , Pirimidinonas/administración & dosificación , Adulto Joven
16.
Genome Biol ; 19(1): 224, 2018 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-30567574

RESUMEN

Despite rapid developments in single cell sequencing, sample-specific batch effects, detection of cell multiplets, and experimental costs remain outstanding challenges. Here, we introduce Cell Hashing, where oligo-tagged antibodies against ubiquitously expressed surface proteins uniquely label cells from distinct samples, which can be subsequently pooled. By sequencing these tags alongside the cellular transcriptome, we can assign each cell to its original sample, robustly identify cross-sample multiplets, and "super-load" commercial droplet-based systems for significant cost reduction. We validate our approach using a complementary genetic approach and demonstrate how hashing can generalize the benefits of single cell multiplexing to diverse samples and experimental designs.


Asunto(s)
Análisis de la Célula Individual/métodos , Coloración y Etiquetado/métodos , Células 3T3 , Animales , Genómica , Células HEK293 , Humanos , Técnicas Inmunológicas , Ratones , Oligonucleótidos
17.
Nat Methods ; 14(9): 865-868, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28759029

RESUMEN

High-throughput single-cell RNA sequencing has transformed our understanding of complex cell populations, but it does not provide phenotypic information such as cell-surface protein levels. Here, we describe cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq), a method in which oligonucleotide-labeled antibodies are used to integrate cellular protein and transcriptome measurements into an efficient, single-cell readout. CITE-seq is compatible with existing single-cell sequencing approaches and scales readily with throughput increases.


Asunto(s)
Mapeo Epitopo/métodos , Epítopos/inmunología , Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ARN/métodos , Análisis de Matrices Tisulares/métodos , Transcriptoma/fisiología
18.
Nat Methods ; 11(8): 834-40, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24997861

RESUMEN

Elucidating the molecular details of how chromatin-associated factors deposit, remove and recognize histone post-translational modification (PTM) signatures remains a daunting task in the epigenetics field. We introduce a versatile platform that greatly accelerates biochemical investigations into chromatin recognition and signaling. This technology is based on the streamlined semisynthesis of DNA-barcoded nucleosome libraries with distinct combinations of PTMs. Chromatin immunoprecipitation of these libraries, once they have been treated with purified chromatin effectors or the combined chromatin recognizing and modifying activities of the nuclear proteome, is followed by multiplexed DNA-barcode sequencing. This ultrasensitive workflow allowed us to collect thousands of biochemical data points revealing the binding preferences of various nuclear factors for PTM patterns and how preexisting PTMs, alone or synergistically, affect further PTM deposition via cross-talk mechanisms. We anticipate that the high throughput and sensitivity of the technology will help accelerate the decryption of the diverse molecular controls that operate at the level of chromatin.


Asunto(s)
Cromatina/química , Código de Barras del ADN Taxonómico , Inmunoprecipitación de Cromatina , Nucleosomas/química
19.
Mol Cell Biol ; 33(24): 4936-46, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24126056

RESUMEN

Trimethylated histone H3 lysine 4 (H3K4) and H3K27 generally mark transcriptionally active and repressive chromatins, respectively. In most cell types, these two modifications are mutually exclusive, and this segregation is crucial for the regulation of gene expression. However, how this anticorrelation is achieved has not been fully understood. Here, we show that removal of the H3K27 trimethyl mark facilitates recruitment of SET1-like H3K4 methyltransferase complexes to their target genes by eliciting a novel interaction between histone H3 and two common subunits, WDR5 and RBBP5, of SET1-like complexes. Consistent with this result, H3K27 trimethylation destabilizes interactions of H3 with SET1-like complexes and antagonizes their ability to carry out H3K4 trimethylation of peptide (H3 residues 1 to 36), histone octamer, and mononucleosome substrates. Altogether, our studies reveal that H3K27 trimethylation of histone H3 represses a previously unrecognized interaction between H3 and SET1-like complexes. This provides an important mechanism that directs the anticorrelation between H3K4 and H3K27 trimethylation.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Procesamiento Proteico-Postraduccional , Sitios de Unión , Supervivencia Celular , Proteínas de Unión al ADN , Epigénesis Genética , Células HEK293 , Células HeLa , Histona Demetilasas/metabolismo , Histonas/química , Humanos , Péptidos y Proteínas de Señalización Intracelular , Metilación , Complejos Multienzimáticos/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Activación Transcripcional , Tretinoina/fisiología
20.
J Virol ; 86(17): 8949-58, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22718819

RESUMEN

Expression of retroviral replication enzymes (Pol) requires a controlled translational recoding event to bypass the stop codon at the end of gag. This recoding event occurs either by direct suppression of termination via the insertion of an amino acid at the stop codon (readthrough) or by alteration of the mRNA reading frame (frameshift). Here we report the effects of a host protein, large ribosomal protein 4 (RPL4), on the efficiency of recoding. Using a dual luciferase reporter assay, we found that transfection of cells with a plasmid encoding RPL4 cDNA increases recoding efficiency in a dose-dependent manner, with a maximal enhancement of nearly twofold. Expression of RPL4 increases recoding of reporters containing retroviral readthrough and frameshift sequences, as well as the Sindbis virus leaky termination signal. RPL4-induced enhancement of recoding is cell line specific and appears to be specific to RPL4 among ribosomal proteins. Cotransfection of RPL4 cDNA with Moloney murine leukemia proviral DNA results in Gag processing defects and a reduction of viral particle formation, presumably caused by the RPL4-dependent alteration of the Gag-to-Gag-Pol ratio required for virion assembly and release.


Asunto(s)
Proteínas de Fusión gag-pol/genética , Virus de la Leucemia Murina de Moloney/genética , Biosíntesis de Proteínas , Animales , Línea Celular , Codón de Terminación , Proteínas de Fusión gag-pol/biosíntesis , Humanos , Ratones , Datos de Secuencia Molecular , Virus de la Leucemia Murina de Moloney/metabolismo , Células 3T3 NIH
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...