Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros












Intervalo de año de publicación
1.
J Leukoc Biol ; 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39241110

RESUMEN

Neutrophils interact with Leishmania when the sandfly vector inoculates these parasites in the host with saliva and promastigotes-derived extracellular vesicles (EVs). It has been shown that this co-injection induces inflammation and exacerbates leishmaniasis lesions. EVs are a heterogeneous group of vesicles released by cells that play a crucial role in intercellular communication. Neutrophils are among the first cells to interact with the parasites and release neutrophil extracellular traps (NETs) that ensnare and kill the promastigotes. Here, we show that Leishmania amazonensis EVs induce NET formation and identify molecular mechanisms involved. We showed the requirement of neutrophils' Toll-like receptors (TLRs) for EVs-induced NET. EVs carrying the virulence factors lipophosphoglycan (LPG) and the zinc metalloproteases were endocytosed by some neutrophils and snared by NETs. EVs-induced NET formation required reactive oxygen species, myeloperoxidase, elastase, peptidyl arginine deiminase (PAD), and Ca++. The proteomic analysis of the EVs cargo revealed 1,189 proteins; the 100 most abundant identified comprised some known Leishmania virulent factors. Importantly, L. amazonensis EVs-induced NETs lead to the killing of promastigotes and could participate in the exacerbated inflammatory response induced by the EVs, which may play a role in the pathogenesis process.

2.
J Fungi (Basel) ; 10(5)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38786693

RESUMEN

Cryptococcus neoformans is a lethal fungus that primarily affects the respiratory system and the central nervous system. One of the main virulence factors is the capsule, constituted by the polysaccharides glucuronoxylomannan (GXM) and glucuronoxylomanogalactan (GXMGal). Polysaccharides are immunomodulators. One of the target cell populations for modulation are macrophages, which are part of the first line of defense and important for innate and adaptive immunity. It has been reported that macrophages can be modulated to act as a "Trojan horse," taking phagocytosed yeasts to strategic sites or having their machinery activation compromised. The scarcity of information on canine cryptococcosis led us to assess whether the purified capsular polysaccharides from C. neoformans would be able to modulate the microbicidal action of macrophages. In the present study, we observed that the capsular polysaccharides, GXM, GXMGal, or capsule total did not induce apoptosis in the DH82 macrophage cell line. However, it was possible to demonstrate that the phagocytic activity was decreased after treatment with polysaccharides. In addition, recovered yeasts from macrophages treated with polysaccharides after phagocytosis could be cultured, showing that their viability was not altered. The polysaccharides led to a reduction in ROS production and the mRNA expression of IL-12 and IL-6. We observed that GXMGal inhibits MHC class II expression and GXM reduces ERK phosphorylation. In contrast, GXMGal and GXM were able to increase the PPAR-γ expression. Furthermore, our data suggest that capsular polysaccharides can reduce the microbicidal activity of canine macrophages DH82.

3.
Pathogens ; 13(2)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38392842

RESUMEN

Protein synthesis has been a very rich target for developing drugs to control prokaryotic and eukaryotic pathogens. Despite the development of new drug formulations, treating human cutaneous and visceral Leishmaniasis still needs significant improvements due to the considerable side effects and low adherence associated with the current treatment regimen. In this work, we show that the di-substituted urea-derived compounds I-17 and 3m are effective in inhibiting the promastigote growth of different Leishmania species and reducing the macrophage intracellular load of amastigotes of the Leishmania (L.) amazonensis and L. major species, in addition to exhibiting low macrophage cytotoxicity. We also show a potential immunomodulatory effect of I-17 and 3m in infected macrophages, which exhibited increased expression of inducible Nitric Oxide Synthase (NOS2) and production of Nitric Oxide (NO). Our data indicate that I-17, 3m, and their analogs may be helpful in developing new drugs for treating leishmaniasis.

4.
Viruses ; 14(9)2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-36146755

RESUMEN

Viral coinfections can modulate the severity of parasitic diseases, such as human cutaneous leishmaniasis. Leishmania parasites infect thousands of people worldwide and cause from single cutaneous self-healing lesions to massive mucosal destructive lesions. The transmission to vertebrates requires the bite of Phlebotomine sandflies, which can also transmit Phlebovirus. We have demonstrated that Leishmania infection requires and triggers the Endoplasmic stress (ER stress) response in infected macrophages. In the present paper, we tested the hypothesis that ER stress is increased and required for the aggravation of Leishmania infection due to coinfection with Phlebovirus. We demonstrated that Phlebovirus Icoaraci induces the ER stress program in macrophages mediated by the branches IRE/XBP1 and PERK/ATF4. The coinfection with L. amazonensis potentiates and sustains the ER stress, and the inhibition of IRE1α or PERK results in poor viral replication and decreased parasite load in macrophages. Importantly, we observed an increase in viral replication during the coinfection with Leishmania. Our results demonstrated the role of ER stress branches IRE1/XBP1 and PERK/ATF4 in the synergic effect on the Leishmania increased load during Phlebovirus coinfection and suggests that Leishmania infection can also increase the replication of Phlebovirus in macrophages.


Asunto(s)
Coinfección , Leishmania , Leishmaniasis , Orthobunyavirus , Phlebovirus , Animales , Endorribonucleasas , Humanos , Proteínas Serina-Treonina Quinasas
5.
Infect Immun ; 90(9): e0032422, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35993771

RESUMEN

The protozoan parasite Leishmania (L.) amazonensis infects and replicates inside host macrophages due to subversion of the innate host cell response. In the present study, we demonstrate that TLR3 is required for the intracellular growth of L. (L.) amazonensis. We observed restricted intracellular infection of TLR3-/- mouse macrophages, reduced levels of IFN1ß and IL-10, and increased levels of IL-12 upon L. (L.) amazonensis infection, compared with their wild-type counterparts. Accordingly, in vivo infection of TLR3-/- mice with L. (L.) amazonensis displayed a significant reduction in lesion size. Leishmania (L.) amazonensis infection induced TLR3 proteolytic cleavage, which is a process required for TLR3 signaling. The chemical inhibition of TLR3 cleavage or infection by CPB-deficient mutant L. (L.) mexicana resulted in reduced parasite load and restricted the expression of IFN1ß and IL-10. Furthermore, we show that the dsRNA sensor molecule PKR (dsRNA-activated protein kinase) cooperates with TLR3 signaling to potentiate the expression of IL-10 and IFN1ß and parasite survival. Altogether, our results show that TLR3 signaling is engaged during L. (L.) amazonensis infection and this component of innate immunity modulates the host cell response.


Asunto(s)
Leishmania mexicana , Leishmaniasis , Parásitos , Receptor Toll-Like 3 , Animales , Interleucina-10/metabolismo , Interleucina-12/metabolismo , Leishmania mexicana/metabolismo , Leishmaniasis/metabolismo , Leishmaniasis/parasitología , Ratones , Parásitos/metabolismo , Proteínas Quinasas/metabolismo , Receptor Toll-Like 3/metabolismo
6.
Front Immunol ; 13: 801182, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35154115

RESUMEN

Leishmania donovani is a protozoan parasite that causes visceral leishmaniasis, provoking liver and spleen tissue destruction that is lethal unless treated. The parasite replicates in macrophages and modulates host microbicidal responses. We have previously reported that neutrophil elastase (NE) is required to sustain L. donovani intracellular growth in macrophages through the induction of interferon beta (IFN-ß). Here, we show that the gene expression of IFN-ß by infected macrophages was reduced by half when TLR4 was blocked by pre-treatment with neutralizing antibodies or in macrophages from tlr2-/- mice, while the levels in macrophages from myd88-/- mice were comparable to those from wild-type C57BL/6 mice. The neutralization of TLR4 in tlr2-/- macrophages completely abolished induction of IFN-ß gene expression upon parasite infection, indicating an additive role for both TLRs. Induction of type I interferon (IFN-I), OASL2, SOD1, and IL10 gene expression by L. donovani was completely abolished in macrophages from NE knock-out mice (ela2-/-) or from protein kinase R (PKR) knock-out mice (pkr-/-), and in C57BL/6 macrophages infected with transgenic L. donovani expressing the inhibitor of serine peptidase 2 (ISP2). Parasite intracellular growth was impaired in pkr-/- macrophages but was fully restored by the addition of exogenous IFN-ß, and parasite burdens were reduced in the spleen of pkr-/- mice at 7 days, as compared to the 129Sv/Ev background mice. Furthermore, parasites were unable to grow in macrophages lacking TLR3, which correlated with lack of IFN-I gene expression. Thus, L. donovani engages innate responses in infected macrophages via TLR2, TLR4, and TLR3, via downstream PKR, to induce the expression of pro-survival genes in the host cell, and guarantee parasite intracellular development.


Asunto(s)
Interferón-alfa/metabolismo , Interferón beta/metabolismo , Leishmania donovani/inmunología , Leishmaniasis Visceral/inmunología , Macrófagos Peritoneales/inmunología , Transducción de Señal/genética , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 3/metabolismo , Receptor Toll-Like 4/metabolismo , eIF-2 Quinasa/metabolismo , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/farmacología , Femenino , Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/inmunología , Técnicas de Inactivación de Genes , Interferón-alfa/genética , Interferón beta/genética , Leishmaniasis Visceral/parasitología , Elastasa de Leucocito/antagonistas & inhibidores , Elastasa de Leucocito/genética , Elastasa de Leucocito/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología , Sulfonamidas/farmacología , Receptor Toll-Like 2/genética , Receptor Toll-Like 3/genética , Receptor Toll-Like 4/antagonistas & inhibidores , Receptor Toll-Like 4/inmunología , eIF-2 Quinasa/genética
7.
Microbes Infect ; 24(2): 104884, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34487860

RESUMEN

Development of a protective vaccine against Leishmania depends on antigen formulation and adjuvants that induce specific immunity and long-lasting immune responses. We previously demonstrated that BALB/c mice intranasally vaccinated with a plasmid DNA encoding the p36/LACK leishmanial antigen (LACK-DNA) develop a protective immunity for up to 3 months after vaccination, which was linked with the systemic expression of vaccine mRNA in peripheral organs. In this study, LACK-DNA vaccine was associated with biocompatible chitosan microparticles cross-linked with glyceraldehyde (CMC) to boost the long-lasting immunity against the late Leishmania infantum challenge. Infection at 7 days, 3 or 6 months after vaccination resulted in significantly lower parasite loads when compared with non-vaccinated controls. Besides, LACK-DNA-chitosan vaccinated mice showed long-time protection observed after the late time point challenge. The achieved protection was correlated with an enhanced spleen cell responsiveness to parasite antigens, marked by increased proliferation and IFN-γ as well as decreased IL-10 production. Moreover, we found diminished systemic levels of TNF-α that was compatible with the better health condition observed in LACK-DNA/CMC vaccinated-infected mice. Together, our data indicate the feasibility of chitosan microparticles as a delivery system tool to extend the protective immunity conferred by LACK-DNA vaccine, which may be explored in vaccine formulations against Leishmania parasite infections.


Asunto(s)
Quitosano , Leishmania infantum , Leishmaniasis Visceral , Vacunas de ADN , Animales , Antígenos de Protozoos , Inmunidad Celular , Inmunización , Leishmania infantum/genética , Ratones , Ratones Endogámicos BALB C , Proteínas Protozoarias/genética , Vacunación , Vacunas de ADN/genética
8.
Front Immunol ; 12: 657449, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34456901

RESUMEN

The respiratory tract is considered the main port of entry of Mycobacterium leprae, the causative agent of leprosy. However, the great majority of individuals exposed to the leprosy bacillus will never manifest the disease due to their capacity to develop protective immunity. Besides acting as a physical barrier, airway epithelium cells are recognized as key players by initiating a local innate immune response that orchestrates subsequent adaptive immunity to control airborne infections. However, to date, studies exploring the interaction of M. leprae with the respiratory epithelium have been scarce. In this work, the capacity of M. leprae to immune activate human alveolar epithelial cells was investigated, demonstrating that M. leprae-infected A549 cells secrete significantly increased IL-8 that is dependent on NF-κB activation. M. leprae was also able to induce IL-8 production in human primary nasal epithelial cells. M. leprae-treated A549 cells also showed higher expression levels of human ß-defensin-2 (hßD-2), MCP-1, MHC-II and the co-stimulatory molecule CD80. Furthermore, the TLR-9 antagonist inhibited both the secretion of IL-8 and NF-κB activation in response to M. leprae, indicating that bacterial DNA sensing by this Toll-like receptor constitutes an important innate immune pathway activated by the pathogen. Finally, evidence is presented suggesting that extracellular DNA molecules anchored to Hlp, a histone-like protein present on the M. leprae surface, constitute major TLR-9 ligands triggering this pathway. The ability of M. leprae to immune activate respiratory epithelial cells herein demonstrated may represent a very early event during infection that could possibly be essential to the generation of a protective response.


Asunto(s)
Células Epiteliales Alveolares/inmunología , Células Epiteliales Alveolares/metabolismo , Inmunidad Innata , Lepra/inmunología , Lepra/metabolismo , Mycobacterium leprae/inmunología , Receptor Toll-Like 9/metabolismo , Células A549 , Biomarcadores , Células Cultivadas , Histonas/metabolismo , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunomodulación , Lepra/microbiología , FN-kappa B/metabolismo
9.
Bio Protoc ; 11(13): e4072, 2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34327269

RESUMEN

Phlebotomine vectors, sand flies of the order Diptera, are known to transmit Leishmania parasites as well as RNA viruses (arboviruses) to humans. The arbovirus, Icoaraci Phlebovirus (BeAN 24262 - ICOV), used in this study was isolated from Nectomys rodents, a mammalian species that is the same natural sylvatic reservoir of Leishmania (Leishmania) amazonensis. This Leishmania species is distributed in primary and secondary forests in Brazil and other countries in America and causes localized and diffuse anergic skin lesions. In our recent studies, we observed an aggravation of the protozoan infection by ICOV through the modulation of cytokine expression, such as IL-10 and IFN-ß, enhancing the parasite load and possibly the pathogenesis. Efficient viral production and quantitation had to be developed and standardized to ensure that immuno-molecular assays provide consistent and reproducible viral infection results. The standardization of these procedures becomes a particularly useful tool in research, with several applications in understanding the interaction between the host cell and Phlebovirus, as well as co-infections, allowing the study of intracellular signaling pathways. Here, we detail a protocol that allows the production and quantitation of the Icoaraci Phlebovirus using BHK-21 cells (baby hamster kidney cells) and subsequent infection of peritoneal macrophages from C57BL/6 mice.

10.
PLoS Pathog ; 17(3): e1009422, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33765083

RESUMEN

The oxidative burst generated by the host immune system can restrict intracellular parasite entry and growth. While this burst leads to the induction of antioxidative enzymes, the molecular mechanisms and the consequences of this counter-response on the life of intracellular human parasites are largely unknown. The transcription factor NF-E2-related factor (NRF2) could be a key mediator of antioxidant signaling during infection due to the entry of parasites. Here, we showed that NRF2 was strongly upregulated in infection with the human Leishmania protozoan parasites, its activation was dependent on a NADPH oxidase 2 (NOX2) and SRC family of protein tyrosine kinases (SFKs) signaling pathway and it reprogrammed host cell metabolism. In inflammatory leishmaniasis caused by a viral endosymbiont inducing TNF-α in chronic leishmaniasis, NRF2 activation promoted parasite persistence but limited TNF-α production and tissue destruction. These data provided evidence of the dual role of NRF2 in protecting both the invading pathogen from reactive oxygen species and the host from an excess of the TNF-α destructive pro-inflammatory cytokine.


Asunto(s)
Interacciones Huésped-Parásitos/fisiología , Leishmania/metabolismo , Leishmaniasis/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/fisiología , Animales , Inflamación/inmunología , Inflamación/metabolismo , Leishmania/inmunología , Leishmaniasis/inmunología , Ratones , Factor 2 Relacionado con NF-E2/inmunología , Transducción de Señal/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...