Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Genes (Basel) ; 15(3)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38540368

RESUMEN

Neurodegenerative proteinopathies such as Alzheimer's Disease are characterized by abnormal protein aggregation and neurodegeneration. Neuroresilience or regenerative strategies to prevent neurodegeneration, preserve function, or restore lost neurons may have the potential to combat human proteinopathies; however, the adult human brain possesses a limited capacity to replace lost neurons. In contrast, axolotls (Ambystoma mexicanum) show robust brain regeneration. To determine whether axolotls may help identify potential neuroresilience or regenerative strategies in humans, we first interrogated whether axolotls express putative proteins homologous to human proteins associated with neurodegenerative diseases. We compared the homology between human and axolotl proteins implicated in human proteinopathies and found that axolotls encode proteins highly similar to human microtubule-binding protein tau (tau), amyloid precursor protein (APP), and ß-secretase 1 (BACE1), which are critically involved in human proteinopathies like Alzheimer's Disease. We then tested monoclonal Tau and BACE1 antibodies previously used in human and rodent neurodegenerative disease studies using immunohistochemistry and western blotting to validate the homology for these proteins. These studies suggest that axolotls may prove useful in studying the role of these proteins in disease within the context of neuroresilience and repair.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Deficiencias en la Proteostasis , Adulto , Animales , Humanos , Ambystoma mexicanum/genética , Ambystoma mexicanum/metabolismo , Enfermedad de Alzheimer/genética , Secretasas de la Proteína Precursora del Amiloide , Enfermedades Neurodegenerativas/genética , Ácido Aspártico Endopeptidasas , Proteínas tau/genética
3.
Commun Biol ; 5(1): 64, 2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-35039652

RESUMEN

Growth of long bones and vertebrae is maintained postnatally by a long-lasting pool of progenitor cells. Little is known about the molecular mechanisms that regulate the output and maintenance of the cells that give rise to mature cartilage. Here we demonstrate that postnatal chondrocyte-specific deletion of a transcription factor Stat3 results in severely reduced proliferation coupled with increased hypertrophy, growth plate fusion, stunting and signs of progressive dysfunction of the articular cartilage. This effect is dimorphic, with females more strongly affected than males. Chondrocyte-specific deletion of the IL-6 family cytokine receptor gp130, which activates Stat3, phenocopied Stat3-deletion; deletion of Lifr, one of many co-receptors that signals through gp130, resulted in a milder phenotype. These data define a molecular circuit that regulates chondrogenic cell maintenance and output and reveals a pivotal positive function of IL-6 family cytokines in the skeletal system with direct implications for skeletal development and regeneration.


Asunto(s)
Condrocitos/metabolismo , Receptor gp130 de Citocinas/genética , Placa de Crecimiento/metabolismo , Ratones/genética , Factor de Transcripción STAT3/genética , Animales , Proliferación Celular/genética , Receptor gp130 de Citocinas/metabolismo , Homeostasis/genética , Ratones/crecimiento & desarrollo , Factor de Transcripción STAT3/metabolismo
4.
Proc Natl Acad Sci U S A ; 116(31): 15570-15579, 2019 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-31311865

RESUMEN

The type I TGFß receptor TGFßRI (encoded by Tgfbr1) was ablated in cartilage. The resulting Tgfbr1Col2 mice exhibited lethal chondrodysplasia. Similar defects were not seen in mice lacking the type II TGFß receptor or SMADs 2 and 3, the intracellular mediators of canonical TGFß signaling. However, we detected elevated BMP activity in Tgfbr1Col2 mice. As previous studies showed that TGFßRI can physically interact with ACVRL1, a type I BMP receptor, we generated cartilage-specific Acvrl1 (Acvrl1Col2 ) and Acvrl1/Tgfbr1 (Acvrl1/Tgfbr1Col2) knockouts. Loss of ACVRL1 alone had no effect, but Acvrl1/Tgfbr1Col2 mice exhibited a striking reversal of the chondrodysplasia seen in Tgfbr1Col2 mice. Loss of TGFßRI led to a redistribution of the type II receptor ACTRIIB into ACVRL1/ACTRIIB complexes, which have high affinity for BMP9. Although BMP9 is not produced in cartilage, we detected BMP9 in the growth plate, most likely derived from the circulation. These findings demonstrate that the major function of TGFßRI in cartilage is not to transduce TGFß signaling, but rather to antagonize BMP signaling mediated by ACVRL1.


Asunto(s)
Cartílago/metabolismo , Factor 2 de Diferenciación de Crecimiento/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo , Transducción de Señal , Receptores de Activinas Tipo II/genética , Receptores de Activinas Tipo II/metabolismo , Animales , Factor 2 de Diferenciación de Crecimiento/genética , Ratones , Ratones Noqueados , Receptor Tipo I de Factor de Crecimiento Transformador beta/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA