Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Leukoc Biol ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39190797

RESUMEN

In immuno-oncology, the focus has traditionally been on αß T cells, and immune checkpoint inhibitors that primarily target PD-1 or CTLA4 in these lymphocytes have revolutionized the management of multiple human malignancies. However, recent research highlights the crucial role of B cells and the antibodies they produce in antagonizing malignant progression, offering new avenues for immunotherapy. Our group has demonstrated that dimeric IgA can penetrate tumor cells, neutralize oncogenic drivers in endosomes, and expel them from the cytosol. This mechanistic insight suggests that engineered antibodies targeting this pathway may effectively reach previously inaccessible targets. Investigating antibody production within intratumoral germinal centers and understanding the impact of different immunoglobulins on malignant progression could furnish new tools for the therapeutic arsenal, including the development of tumor-penetrating antibodies. This review aims to elucidate the nature of humoral adaptive immune responses in human cancer and explore how they could herald a new era of immunotherapeutic modalities. By expanding the scope of anti-tumor immunotherapies, these approaches have the potential to benefit a broader range of cancer patients, particularly through the utilization of tumor cell-penetrating antibodies.

2.
Life (Basel) ; 14(3)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38541651

RESUMEN

Immuno-oncology has traditionally focused on conventional MHC-restricted αß T cells. Yet, unconventional γδ T cells, which kill tumor cells in an MHC-unrestricted manner, display characteristics of effector activity and stemness without exhaustion and are nearly universally observed in human gynecologic malignancies, correlating with improved outcomes. These cells do not have a clear counterpart in mice but are also found in the healthy female reproductive tract. Interventions that modulate their in vivo activity, or cellular therapies utilizing γδ T cells as an allogeneic, "off-the-shelf" platform (e.g., for chimeric antigen receptor expression) hold significant potential against challenging tumors like ovarian cancer, which has been stubbornly resistant to the immune checkpoint inhibitors that change the landscape of other human tumors. Here, we discuss recent discoveries on the specific populations of γδ T cells that infiltrate human gynecologic cancers, their anti-tumor activity, and the prospect of redirecting their effector function against tumor cells to develop a new generation of immunotherapies that extends beyond the traditional αß T cell-centric view of the field.

3.
Immunity ; 56(11): 2570-2583.e6, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37909039

RESUMEN

Dimeric IgA (dIgA) can move through cells via the IgA/IgM polymeric immunoglobulin receptor (PIGR), which is expressed mainly on mucosal epithelia. Here, we studied the ability of dIgA to target commonly mutated cytoplasmic oncodrivers. Mutation-specific dIgA, but not IgG, neutralized KRASG12D within ovarian carcinoma cells and expelled this oncodriver from tumor cells. dIgA binding changed endosomal trafficking of KRASG12D from accumulation in recycling endosomes to aggregation in the early/late endosomes through which dIgA transcytoses. dIgA targeting of KRASG12D abrogated tumor cell proliferation in cell culture assays. In vivo, KRASG12D-specific dIgA1 limited the growth of KRASG12D-mutated ovarian and lung carcinomas in a manner dependent on CD8+ T cells. dIgA specific for IDH1R132H reduced colon cancer growth, demonstrating effective targeting of a cytoplasmic oncodriver not associated with surface receptors. dIgA targeting of KRASG12D restricted tumor growth more effectively than small-molecule KRASG12D inhibitors, supporting the potential of this approach for the treatment of human cancers.


Asunto(s)
Carcinoma , Inmunoglobulina A , Humanos , Inmunoglobulina A/metabolismo , Linfocitos T CD8-positivos/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Citoplasma/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...