Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Front Microbiol ; 13: 1081815, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36762097

RESUMEN

Actinomycetota in the phylum of bacteria has been explored extensively as a source of antibiotics and secondary metabolites. In addition to acting as plant growth-promoting agents, they also possess the potential to control various plant pathogens; however, there are limited studies that report the facultative predatory ability of Actinomycetota spp. Furthermore, the mechanisms that underline predation are poorly understood. We assessed the diversity of strategies employed by predatory bacteria to attack and subsequently induce the cell lysing of their prey. We revisited the diversity and abundance of secondary metabolite molecules linked to the different predation strategies by bacteria species. We analyzed the pros and cons of the distinctive predation mechanisms and explored their potential for the development of new biocontrol agents. The facultative predatory behaviors diverge from group attack "wolfpack," cell-to-cell proximity "epibiotic," periplasmic penetration, and endobiotic invasion to degrade host-cellular content. The epibiotic represents the dominant facultative mode of predation, irrespective of the habitat origins. The wolfpack is the second-used approach among the Actinomycetota harboring predatory traits. The secondary molecules as chemical weapons engaged in the respective attacks were reviewed. We finally explored the use of predatory Actinomycetota as a new cost-effective and sustainable biocontrol agent against plant pathogens.

3.
Transbound Emerg Dis ; 69(3): 1466-1478, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-33876581

RESUMEN

Rift Valley Fever (RVF) and West Nile virus (WNV) are two important emerging Arboviruses transmitted by Aedes and Culex mosquitoes, typically Ae. caspius, Ae. detritus and Cx. pipiens in temperate regions. In Morocco, several outbreaks of WNV (1996, 2003 and 2010), affecting horses mostly, have been reported in north-western regions resulting in the death of 55 horses and one person cumulatively. Serological evidence of WNV local circulation, performed one year after the latest outbreak, revealed WNV neutralizing bodies in 59 out of 499 tested participants (El Rhaffouli et al., 2012). The country also shares common borders with northern Mauritania, where RVF is often documented. Human movement, livestock trade, climate changes and the availability of susceptible mosquito vectors are expected to increase the spread of these diseases in the country. Thus, in this study, we gathered a data set summarizing occurrences of Ae. caspius, Ae. detritus and Cx. pipiens in the country, and generated model prediction for their potential distribution under both current and future (2050) climate conditions, as a proxy to identify regions at-risk of RVF and WNV probable expansion. We found that the north-western regions (where the population is most concentrated), specifically along the Atlantic coastline, are highly suitable for Ae. caspius, Ae. detritus and Cx. pipiens, under present-day conditions. Future model scenarios anticipated possible range changes for the three mosquitoes under all climatic assumptions. All of the studied species are prospected to gain new areas that are currently not suitable, even under the most optimist scenario, thus placing additional human populations at risk. Our maps and predictions offer an opportunity to strategically target surveillance and control programmes. Public health officials, entomological surveillance and control delegation must augment efforts and continuously monitor these areas to reduce and minimize human infection risk.


Asunto(s)
Aedes , Culex , Enfermedades de los Caballos , Fiebre del Valle del Rift , Virus de la Fiebre del Valle del Rift , Fiebre del Nilo Occidental , Virus del Nilo Occidental , Animales , Caballos , Humanos , Insectos Vectores , Marruecos/epidemiología , Fiebre del Valle del Rift/epidemiología , Fiebre del Nilo Occidental/epidemiología , Fiebre del Nilo Occidental/veterinaria
4.
Transbound Emerg Dis ; 69(4): e1160-e1171, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34821477

RESUMEN

Arboviruses (arthropod-borne viruses) are expanding their geographic range, posing significant health threats to millions of people worldwide. This expansion is associated with efficient and suitable vector availability. Apart from the well-known Aedes aegypti and Ae. albopictus, other Aedes species may potentially promote the geographic spread of arboviruses because these viruses have similar vector requirements. Aedes japonicus, Ae. vexans and Ae. vittatus are a growing concern, given their potential and known vector competence for several arboviruses including dengue, chikungunya, and Zika viruses. In the present study, we developed detailed maps of their global potential distributions under both current and future (2050) climate conditions, using an ecological niche modeling approach (Maxent). Under present-day conditions, Ae. japonicus and Ae. vexans have suitable areas in the northeastern United States, across Europe and in southeastern China, whereas the tropical regions of South America, Africa and Asia are more suitable for Ae. vittatus. Future scenarios anticipated range changes for the three species, with each expected to expand into new areas that are currently not suitable. By 2050, Ae. japonicus will have a broader potential distribution across much of Europe, the United States, western Russia and central Asia. Aedes vexans may be able to expand its range, especially in Libya, Egypt and southern Australia. For Ae. vittatus, future projections indicated areas at risk in sub-Saharan Africa and the Middle East. As such, these species deserve as much attention as Ae. aegypti and Ae. albopictus when processing arboviruses risk assessments and our findings may help to better understand the potential distribution of each species.


Asunto(s)
Aedes , Arbovirus , Infección por el Virus Zika , Virus Zika , Animales , Cambio Climático , Ecosistema , Humanos , Mosquitos Vectores , Infección por el Virus Zika/veterinaria
5.
Antibiotics (Basel) ; 10(5)2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33925772

RESUMEN

The emergence and spread of carbapenem-resistant Enterobacteriaceae (CRE) represent a major clinical problem and raise serious health concerns. The present study aimed to investigate and ascertain the occurrence of CRE among hospitalized patients of Mohamed VI University Hospital, Marrakech, Morocco. Biological samples were collected over a one-year period (2018). The bacterial isolates were identified by MALDI-TOF-MS. Antibiotic susceptibility testing was performed using disc diffusion and Etest. The modified Hodge test and combined disc diffusion test were used for phenotypic detection. CRE hydrolyzing enzyme encoding genes: blaOXA-48, blaKPC, blaIMP, blaVIM, and blaNDM were characterized by PCR and DNA sequencing. In total, 131 non-duplicate CRE clinical strains resistant to Ertapenem were isolated out of 1603 initial Enterobacteriaceae. Klebsiella pneumoniae was the most common species (59%), followed by Enterobacter cloacae (24%), E. coli (10%), Citrobacter freundii (3%), Klebsiellaoxycota (2%), Serratia marcescens (1%), and Citrobacter braakii (1%). Of these, 56.49%, 21.37%, 15.27%, 3.38%, and 3.05% were collected from blood, urine, pus, catheters and respiratory samples, respectively. Approximately 85.5% (112/131) of the isolates were carbapenemase producers (40 blaOXA-48, 27 blaNDM, 38 blaOXA-48 + blaNDM and 7 blaVIM). All metallo-ß-lactamases isolates were NDM-1 and VIM-1 producers. This is the first documentation of blaOXA-48 genes from C. freundii and C. braakii in Morocco.

6.
Environ Sci Pollut Res Int ; 28(21): 26840-26848, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33501577

RESUMEN

The efficiency of the treatment of hospital wastewater by actinobacteria was investigated using two chemometric data analysis methods. Six strains of multi-resistant bacteria isolated from Marrakesh hospital wastewater and four strains of antagonistic actinobacteria isolated from Moroccan marine environment were characterized by fatty acids released as methyl esters by thermochemolysis-GC/MS. The hierarchical cluster analysis (HCA) and the principal component analysis (PCA) were used to correlate fatty acids (FA) distributions within strains. HCA allowed to discriminate between bacteria and actinobacteria. A lower Euclidean distance is noted for bacteria. With PCA, linear and branched-chained FAs correlated with bacteria whereas mono unsaturated FAs correlated more specifically with Gram (-) bacteria. Terminally branched-chained FAs correlated most likely with actinobacteria. A co-culture of actinobacteria and bacteria monitored during 15 days demonstrated the efficiency of the biological treatment for 2 of the 4 studied actinobacteria. The effect is more important on Gram-negative bacteria. Antagonistic actinobacteria seem to be poorly efficient against Gram-positive bacteria.


Asunto(s)
Actinobacteria , Antibacterianos/farmacología , Bacterias , Análisis de Datos , Hospitales , Marruecos , Aguas Residuales
7.
Antibiotics (Basel) ; 9(2)2020 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-32092889

RESUMEN

Predatory bacteria constitute a heterogeneous group of prokaryotes able to lyse and feed on the cellular constituents of other bacteria in conditions of nutrient scarcity. In this study, we describe the isolation of Actinobacteria predator of other bacteria from the marine water of the Moroccan Atlantic coast. Only 4 Actinobacteria isolates showing strong predation capability against native or multidrug-resistant Gram-positive or Gram-negative bacteria were identified among 142 isolated potential predatory bacteria. These actinobacterial predators were shown to belong to the Streptomyces genus and to inhibit the growth of various native or multidrug-resistant micro-organisms, including Micrococcus luteus, Staphylococcus aureus (native and methicillin-resistant), and Escherichia coli (native and ampicillin-resistant). Even if no clear correlation could be established between the antibacterial activities of the selected predator Actinobacteria and their predatory activity, we cannot exclude that some specific bio-active secondary metabolites were produced in this context and contributed to the killing and lysis of the bacteria. Indeed, the co-cultivation of Actinobacteria with other bacteria is known to lead to the production of compounds that are not produced in monoculture. Furthermore, the production of specific antibiotics is linked to the composition of the growth media that, in our co-culture conditions, exclusively consisted of the components of the prey living cells. Interestingly, our strategy led to the isolation of bacteria with interesting inhibitory activity against methicillin-resistant S. aureus (MRSA) as well as against Gram-negative bacteria.

8.
Artículo en Inglés | MEDLINE | ID: mdl-24291716

RESUMEN

A novel actinomycete strain, Streptomyces anulatus S37, has been isolated from the rhizosphere of healthy Moroccan Vitis vinifera on the basis on its ability to promote grapevine growth and to induce natural defences against various phytopathogens. In the present work, the main bioactive metabolites produced by S. anulatus S37 were isolated. A crude n-BuOH extract of the S37 fermentation broth was firstly partitioned in a biphasic solvent system composed of n-heptane, methanol, and water (5:1.5:3.5, v/v). The most active organic fraction (1.1g) as revealed by TLC-bioautography was subsequently separated by a two-step centrifugal partition chromatography procedure. The first separation was performed in the ascending mode at 6mL/min with the biphasic solvent system n-heptane, ethyl acetate, methanol and water (2:1:2:1, v/v), to finally recover 40mg of a pure compound identified as streptochlorin by NMR spectroscopy. In a second separation, the solvent system n-heptane, acetonitrile, and water (5:5:4, v/v) was used in the ascending mode at 3mL/min to purify 135mg of nigericin and 53mg of piericidin A1. Assays performed with the three compounds have confirmed their inhibitory impact on the growth of Botryris cinerea in dual confrontation and also on V. vinifera L. plantlets.


Asunto(s)
Antibacterianos/aislamiento & purificación , Centrifugación/métodos , Cromatografía Liquida/métodos , Streptomyces/química , Antibacterianos/química , Antibacterianos/farmacología , Botrytis/efectos de los fármacos , Rizosfera , Vitis/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...