RESUMEN
Aspergillus fumigatus is the leading cause of aspergillosis, associated with high mortality rates, particularly in immunocompromised individuals. In search of novel genetic targets against aspergillosis, we studied the WOPR transcription factor OsaA. The deletion of the osaA gene resulted in colony growth reduction. Conidiation is also influenced by osaA; both osaA deletion and overexpression resulted in a decrease in spore production. Wild-type expression levels of osaA are necessary for the expression of the conidiation regulatory genes brlA, abaA, and wetA. In addition, osaA is necessary for normal cell wall integrity. Furthermore, the deletion of osaA resulted in a reduction in the ability of A. fumigatus to adhere to surfaces, decreased thermotolerance, as well as increased sensitivity to oxidative stress. Metabolomics analysis indicated that osaA deletion or overexpression led to alterations in the production of multiple secondary metabolites, including gliotoxin. This was accompanied by changes in the expression of genes in the corresponding secondary metabolite gene clusters. These effects could be, at least in part, due to the observed reduction in the expression levels of the veA and laeA global regulators when the osaA locus was altered. Importantly, our study shows that osaA is indispensable for virulence in both neutropenic and corticosteroid-immunosuppressed mouse models.
RESUMEN
Crop contamination by aflatoxin B1 (AFB1), an Aspergillus-flavus-produced toxin, is frequently observed in tropical and subtropical regions. This phenomenon is emerging in Europe, most likely as a result of climate change. Alternative methods, such as biocontrol agents (BCAs), are currently being developed to reduce the use of chemicals in the prevention of mycotoxin contamination. Actinobacteria are known to produce many bioactive compounds, and some of them can reduce in vitro AFB1 concentration. In this context, the present study aims to analyze the effect of a cell-free supernatant (CFS) from Streptomyces roseolus culture on the development of A. flavus, as well as on its transcriptome profile using microarray assay and its impact on AFB1 concentration. Results demonstrated that in vitro, the S. roseolus CFS reduced the dry weight and conidiation of A. flavus from 77% and 43%, respectively, and was therefore associated with a reduction in AFB1 concentration reduction to levels under the limit of quantification. The transcriptomic data analysis revealed that 5198 genes were differentially expressed in response to the CFS exposure and among them 5169 were downregulated including most of the genes involved in biosynthetic gene clusters. The aflatoxins' gene cluster was the most downregulated. Other gene clusters, such as the aspergillic acid, aspirochlorine, and ustiloxin B gene clusters, were also downregulated and associated with a variation in their concentration, confirmed by LC-HRMS.
Asunto(s)
Aflatoxinas , Aspergillus flavus , Aspergillus flavus/genética , Aflatoxina B1/análisis , TranscriptomaRESUMEN
In fungi, conserved homeobox-domain proteins are transcriptional regulators governing development. In Aspergillus species, several homeobox-domain transcription factor genes have been identified, among them, hbxA/hbx1. For instance, in the opportunistic human pathogen Aspergillus fumigatus, hbxA is involved in conidial production and germination, as well as virulence and secondary metabolism, including production of fumigaclavines, fumiquinazolines, and chaetominine. In the agriculturally important fungus Aspergillus flavus, disruption of hbx1 results in fluffy aconidial colonies unable to produce sclerotia. hbx1 also regulates production of aflatoxins, cyclopiazonic acid and aflatrem. Furthermore, transcriptome studies revealed that hbx1 has a broad effect on the A. flavus genome, including numerous genes involved in secondary metabolism. These studies underline the importance of the HbxA/Hbx1 regulator, not only in developmental processes but also in the biosynthesis of a broad number of fungal natural products, including potential medical drugs and mycotoxins. To gain further insight into the regulatory scope of HbxA in Aspergilli, we studied its role in the model fungus Aspergillus nidulans. Our present study of the A. nidulans hbxA-dependent transcriptome revealed that more than one thousand genes are differentially expressed when this regulator was not transcribed at wild-type levels, among them numerous transcription factors, including those involved in development as well as in secondary metabolism regulation. Furthermore, our metabolomics analyses revealed that production of several secondary metabolites, some of them associated with A. nidulans hbxA-dependent gene clusters, was also altered in deletion and overexpression hbxA strains compared to the wild type, including synthesis of nidulanins A, B and D, versicolorin A, sterigmatocystin, austinol, dehydroaustinol, and three unknown novel compounds.
Asunto(s)
Aspergillus nidulans , Factores de Transcripción , Humanos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Genes Homeobox , Aspergillus nidulans/metabolismo , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas de Homeodominio/genéticaRESUMEN
Penicillium, one of the most common fungi occurring in a diverse range of habitats, has a worldwide distribution and a large economic impact on human health. Hundreds of the species belonging to this genus cause disastrous decay in food crops and are able to produce a varied range of secondary metabolites, from which we can distinguish harmful mycotoxins. Some Penicillium species are considered to be important producers of patulin and ochratoxin A, two well-known mycotoxins. The production of these mycotoxins and other secondary metabolites is controlled and regulated by different mechanisms. The aim of this review is to highlight the different levels of regulation of secondary metabolites in the Penicillium genus.
Asunto(s)
Micotoxinas/metabolismo , Penicillium/metabolismo , Metabolismo Secundario/genética , Factores de Transcripción/metabolismo , AMP Cíclico/metabolismo , Epigénesis Genética , Regulación Fúngica de la Expresión Génica/genética , Familia de Multigenes/genética , Osmorregulación/genética , Penicillium/patogenicidad , Factores de Transcripción/genética , VirulenciaRESUMEN
Diversity of species within Aspergillus niger clade, currently represented by A. niger sensu stricto and A. welwitshiae, was investigated combining three-locus gene sequences, Random Amplified Polymorphic DNA, secondary metabolites profile and morphology. Firstly, approximately 700 accessions belonging to this clade were investigated using calmodulin gene sequences. Based on these sequences, eight haplotypes were clearly identified as A. niger (n = 247) and 17 as A. welwitschiae (n = 403). However, calmodulin sequences did not provide definitive species identities for six haplotypes. To elucidate the taxonomic position of these haplotypes, two other loci, part of the beta-tubulin gene and part of the RNA polymerase II gene, were sequenced and used to perform an analysis of Genealogical Concordance Phylogenetic Species Recognition. This analysis enabled the recognition of two new phylogenetic species. One of the new phylogenetic species showed morphological and chemical distinguishable features in comparison to the known species A. welwitschiae and A. niger. This species is illustrated and described as Aspergillus vinaceus sp. nov. In contrast to A. niger and A. welwitschiae, A. vinaceus strains produced asperazine, but none of them were found to produce ochratoxin A and/or fumonisins. Sclerotium production on laboratory media, which does not occur in strains of A. niger and A. welwitschiae, and strictly sclerotium-associated secondary metabolites (14-Epi-hydroxy-10,23-dihydro-24,25-dehydroaflavinine; 10,23-Dihydro-24,25-dehydroaflavinine; 10,23-Dihydro-24,25-dehydro-21-oxo-aflavinine) were found in A. vinaceus. The strain type of A. vinaceus sp. nov. is ITAL 47,456 (T) (=IBT 35556).
RESUMEN
Dissemination and survival of ascomycetes is through asexual spores. The brlA gene encodes a C2H2-type zinc-finger transcription factor, which is essential for asexual development. Penicillium expansum causes blue mold disease and is the main source of patulin, a mycotoxin that contaminates apple-based food. A P. expansum PeΔbrlA deficient strain was generated by homologous recombination. In vivo, suppression of brlA completely blocked the development of conidiophores that takes place after the formation of coremia/synnemata, a required step for the perforation of the apple epicarp. Metabolome analysis displayed that patulin production was enhanced by brlA suppression, explaining a higher in vivo aggressiveness compared to the wild type (WT) strain. No patulin was detected in the synnemata, suggesting that patulin biosynthesis stopped when the fungus exited the apple. In vitro transcriptome analysis of PeΔbrlA unveiled an up-regulated biosynthetic gene cluster (PEXP_073960-PEXP_074060) that shares high similarity with the chaetoglobosin gene cluster of Chaetomium globosum. Metabolome analysis of PeΔbrlA confirmed these observations by unveiling a greater diversity of chaetoglobosin derivatives. We observed that chaetoglobosins A and C were found only in the synnemata, located outside of the apple, whereas other chaetoglobosins were detected in apple flesh, suggesting a spatial-temporal organization of the chaetoglobosin biosynthesis pathway.
Asunto(s)
Genes Fúngicos/genética , Patulina/biosíntesis , Patulina/genética , Penicillium/genética , Vías Biosintéticas/genética , Frutas/microbiología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Eliminación de Gen , Regulación Fúngica de la Expresión Génica/genética , Alcaloides Indólicos/metabolismo , Malus/microbiología , Metaboloma/genética , Familia de Multigenes/genética , Patulina/metabolismo , Penicillium/metabolismo , Transcriptoma/genética , Regulación hacia Arriba/genéticaRESUMEN
The study of fungal species evolved radically with the development of molecular techniques and produced new evidence to understand specific fungal mechanisms such as the production of toxic secondary metabolites. Taking advantage of these technologies to improve food safety, the molecular study of toxinogenic species can help elucidate the mechanisms underlying toxin production and enable the development of new effective strategies to control fungal toxicity. Numerous studies have been made on genes involved in aflatoxin B1 (AFB1) production, one of the most hazardous carcinogenic toxins for humans and animals. The current review presents the roles of these different genes and their possible impact on AFB1 production. We focus on the toxinogenic strains Aspergillus flavus and A. parasiticus, primary contaminants and major producers of AFB1 in crops. However, genetic reports on A. nidulans are also included because of the capacity of this fungus to produce sterigmatocystin, the penultimate stable metabolite during AFB1 production. The aim of this review is to provide a general overview of the AFB1 enzymatic biosynthesis pathway and its link with the genes belonging to the AFB1 cluster. It also aims to illustrate the role of global environmental factors on aflatoxin production and the recent data that demonstrate an interconnection between genes regulated by these environmental signals and aflatoxin biosynthetic pathway.
Asunto(s)
Aflatoxinas/biosíntesis , Aflatoxinas/genética , Animales , Interacción Gen-Ambiente , HumanosRESUMEN
Aspergillus fumigatus is the leading cause of invasive aspergillosis, which in immunocompromised patients results in a mortality rate as high as 90%. Earlier studies showed that HbxA is a global regulator in Aspergillus flavus affecting morphological development and secondary metabolism. Here, we determined its role in A. fumigatus, examining whether HbxA influences the regulation of asexual development, natural product biosynthesis, and virulence of this fungus. Our analysis demonstrated that removal of the hbxA gene caused a near-complete loss of conidial production in the mutant strain, as well as a slight reduction in colony growth. Other aspects of asexual development are affected, such as size and germination of conidia. Furthermore, we showed that in A. fumigatus, the loss of hbxA decreased the expression of the brlA central regulatory pathway involved in asexual development, as well as the expression of the "fluffy" genes flbB, flbD, and fluG HbxA was also found to regulate secondary metabolism, affecting the biosynthesis of multiple natural products, including fumigaclavines, fumiquinazolines, and chaetominine. In addition, using a neutropenic mouse infection model, hbxA was found to negatively impact the virulence of A. fumigatusIMPORTANCE The number of immunodepressed individuals is increasing, mainly due to the greater life expectancy in immunodepressed patients due to improvements in modern medical treatments. However, this population group is highly susceptible to invasive aspergillosis. This devastating illness, mainly caused by the fungus Aspergillus fumigatus, is associated with mortality rates reaching 90%. Treatment options for this disease are currently limited, and a better understanding of A. fumigatus genetic regulatory mechanisms is paramount for the design of new strategies to prevent or combat this infection. Our work provides new insight into the regulation of the development, metabolism, and virulence of this important opportunistic pathogen. The transcriptional regulatory gene hbxA has a profound effect on A. fumigatus biology, governing multiple aspects of conidial development. This is relevant since conidia are the main source of inoculum in Aspergillus infections. Importantly, hbxA also regulates the biosynthesis of secondary metabolites and the pathogenicity of this fungus.
Asunto(s)
Aspergillus fumigatus/fisiología , Aspergillus fumigatus/patogenicidad , Proteínas Fúngicas/genética , Elementos Reguladores de la Transcripción/genética , Aspergillus fumigatus/crecimiento & desarrollo , Proteínas Fúngicas/metabolismo , Reproducción Asexuada , Metabolismo Secundario , VirulenciaRESUMEN
Filamentous fungi are one of the main causes of food losses worldwide and their ability to produce mycotoxins represents a hazard for human health. Their correct and rapid identification is thus crucial to manage food safety. In recent years, MALDI-TOF emerged as a rapid and reliable tool for fungi identification and was applied to typing of bacteria and yeasts, but few studies focused on filamentous fungal species complex differentiation and typing. Therefore, the aim of this study was to evaluate the use of MALDI-TOF to identify species of the Aspergillus section Flavi, and to differentiate Penicillium roqueforti isolates from three distinct genetic populations. Spectra were acquired from 23 Aspergillus species and integrated into a database for which cross-validation led to more than 99% of correctly attributed spectra. For P. roqueforti, spectra were acquired from 63 strains and a two-step calibration procedure was applied before database construction. Cross-validation and external validation respectively led to 94% and 95% of spectra attributed to the right population. Results obtained here suggested very good agreement between spectral and genetic data analysis for both Aspergillus species and P. roqueforti, demonstrating MALDI-TOF applicability as a fast and easy alternative to molecular techniques for species complex differentiation and strain typing of filamentous fungi.
Asunto(s)
Aspergillus/aislamiento & purificación , Técnicas de Tipificación Micológica/métodos , Penicillium/aislamiento & purificación , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Aspergillus/química , Aspergillus/clasificación , Contaminación de Alimentos/análisis , Microbiología de Alimentos , Penicillium/química , Penicillium/clasificaciónRESUMEN
Dried leaves and stems of Ilex paraguariensis St. Hil. (yerba mate) are used to make a popular beverage in some countries of South America, commonly known as "chimarrão". The present study was designed to evaluate the occurrence of toxigenic Aspergillus in yerba mate in order to define the mycotoxin risk associated with this foodstuff. All samples tested were positive for fungal contamination, and the fungal load per sample ranged from 2.0â¯×â¯102 to 1.6â¯×â¯104 CFU/g. Aspergillus section Nigri was found in all samples and represented 76.5% of the total fungi isolated. Aspergillus section Circumdati, Aspergillus section Flavi and Aspergillus section Cremei were found at low frequencies. Thirteen different Aspergillus species were identified. The most common species found was A. luchuensis, which does not produce any harmful toxin for humans. A. niger, A. welwitschiae, A. flavus and A. novoparasiticus, all potentially toxigenic species, were found only in small quantities. The A. niger and A. welwitschiae strains were cultured to test for ochratoxin A and fumonisin B2 production. Only one strain producing ochratoxin A was found, but approximately 29% of the strains were positive for fumonisin B2. The A. flavus and A. novoparasiticus strains were tested for aflatoxins production, and 63% were positive. A. pallidofulvus, recently assigned to A. section Circumdati, was reported for the first time in herbs. All A. pallidofulvus strains analyzed in this study were negative for ochratoxin A production. In conclusion, A. section Nigri occurs with high frequency in yerba mate, and A. luchuensis is the predominant species. Although toxigenic species were found in this herb, the incidence was low.
Asunto(s)
Aspergillus/aislamiento & purificación , Bebidas/análisis , ADN de Hongos/aislamiento & purificación , Contaminación de Alimentos/análisis , Microbiología de Alimentos , Ilex paraguariensis/química , Ilex paraguariensis/microbiología , Aflatoxinas/análisis , Aspergillus/clasificación , Aspergillus/metabolismo , Bebidas/microbiología , Brasil , Recuento de Colonia Microbiana , ADN de Hongos/genética , Fumonisinas/análisis , Micotoxinas/análisis , Ocratoxinas/análisisRESUMEN
To limit anthropogenic impact on ecosystems, regulations have been implemented along with global awareness that human activities are harmful to the environment. Ecological risk assessment (ERA) is the main procedure which allows to assess potential impacts of stressors on the environment as a result of human activities. ERA is typically implemented through different steps of laboratory testing. The approaches taken for ERA evolve along with scientific knowledge, to improve predictions on ecological risks for ecosystems. We here address the importance of intraspecific variability as a potential source of error in the laboratory evaluation of pollutants. To answer this question, three aquatic macrophyte species with different life-history traits but with their leaves directly in contact with the water were chosen; Lemna minor and Myriophyllum spicatum, two OECD model species, and Ceratophyllum demersum. For each species, three or four genotypes were exposed to 7-8 copper concentrations (up to 1.9 mg/L, 2 mg/L or 36 mg/L for C. demersum, L. minor and M. spicatum, respectively). To assess species sensitivity, growth-related endpoints such as Relative Growth Rate (RGR), based either on biomass production or on length/frond production, and chlorophyll fluorescence Fv/Fm, were measured. For each endpoint, the effective concentration 50% (EC50) was calculated. Almost all endpoints were affected by Cu exposure, except Fv/Fm of M. spicatum, and resulted in significant differences among genotypes for Cu sensitivity. Genotypes of L. minor exhibited up to 35% of variation in EC50 values based on Fv/Fm, showing differential sensivity among genotypes. Significant differences in EC50 values were found for RGR based on length for M. spicatum, with up to 72% of variation. Finally, C. demersum demonstrated significant sensitivity differences among genotypes with up to 78% variation for EC50 based on length. Overall, interspecific variation was higher than intraspecific variation, and explained 77% of the variation found among genotypes for RGR based on biomass, and 99% of the variation found for Fv/Fm. Our results highlight that depending on the endpoint, sensitivity can vary greatly within a species, and that pollutant- and species-specific endpoints should be considered in ERA.
Asunto(s)
Araceae/efectos de los fármacos , Araceae/genética , Cobre/toxicidad , Magnoliopsida/efectos de los fármacos , Magnoliopsida/genética , Contaminantes Químicos del Agua/toxicidad , Araceae/crecimiento & desarrollo , Biomasa , Ecosistema , Monitoreo del Ambiente , Genotipo , Magnoliopsida/crecimiento & desarrollo , Medición de Riesgo , Especificidad de la EspecieRESUMEN
Spices are used extensively in Lebanon not only to flavour foods but also for their medicinal properties. To date, no data are available regarding the nature of the toxigenic fungal species that may contaminate these products at the marketing stage in this country. Eighty samples corresponding to 14 different types of spices were collected throughout Lebanon to characterize the Aspergillus section Flavi contaminating spices marketed in Lebanon and the toxigenic potential of these fungal species. Most fungal genera and species were identified as belonging to Aspergillus section Flavi. Aspergillus flavus was the most frequent species, representing almost 80% of the isolates. Although identified as A. flavus by molecular analysis, some strains displayed atypical morphological features. Seven strains of A. tamarii and one A. minisclerotigenes were also isolated. Analyses of toxigenic potential demonstrated that almost 80% of strains were able to produce mycotoxins, 47% produced aflatoxins, and 72% produced cyclopiazonic acid, alone or in combination with aflatoxins.
Asunto(s)
Aspergillus/citología , Aspergillus/metabolismo , Especias/microbiología , Aflatoxinas/farmacología , Aspergillus/clasificación , Aspergillus flavus/clasificación , Aspergillus flavus/citología , Aspergillus flavus/metabolismo , Contaminación de Alimentos , Indoles/farmacología , Líbano , Micotoxinas/metabolismo , FilogeniaRESUMEN
Aflatoxins (AFs) are secondary metabolites produced by Aspergillus section Flavi during their development, particularly in maize. It is widely accepted that AFB1 is a major contaminant in regions where hot climate conditions favor the development of aflatoxigenic species. Global warming could lead to the appearance of AFs in maize produced in Europe. This was the case in 2015, in France, when the exceptionally hot and dry climatic conditions were favorable for AF production. Our survey revealed AF contamination of 6% (n = 114) of maize field samples and of 15% (n = 81) of maize silo samples analyzed. To understand the origin of the contamination, we characterized the mycoflora in contaminated samples and in samples produced in the same geographic and climatic conditions but with no AFs. A special focus was placed on Aspergillus section Flavi. A total of 67 strains of Aspergillus section Flavi were isolated from the samples. As expected, the strains were observed in all AF+ samples and, remarkably, also in almost 40% of AF- samples, demonstrating the presence of these potent toxin producers in fields in France. A. flavus was the most frequent species of the section Flavi (69% of the strains). But surprisingly, A. parasiticus was also a frequent contaminant (28% of the strains), mostly isolated from AF+ samples. This finding is in agreement with the presence of AFG in most of those samples.
Asunto(s)
Aflatoxinas/análisis , Aspergillus/aislamiento & purificación , Contaminación de Alimentos/análisis , Zea mays/química , Zea mays/microbiología , Monitoreo Biológico , Francia , Lluvia , TemperaturaRESUMEN
Penicillium expansum, the causal agent of blue mould disease, produces the mycotoxins patulin and citrinin amongst other secondary metabolites. Secondary metabolism is associated with fungal development, which responds to numerous biotic and abiotic external triggers. The global transcription factor VeA plays a key role in the coordination of secondary metabolism and differentiation processes in many fungal species. The specific role of VeA in P. expansum remains unknown. A null mutant PeΔveA strain and a complemented PeΔveA:veA strain were generated in P. expansum and their pathogenicity on apples was studied. Like the wild-type and the complemented strains, the null mutant PeΔveA strain was still able to sporulate and to colonize apples, but at a lower rate. However, it could not form coremia either in vitro or in vivo, thus limiting its dissemination from natural substrates. The impact of veA on the expression of genes encoding proteins involved in the production of patulin, citrinin and other secondary metabolites was evaluated. The disruption of veA drastically reduced the production of patulin and citrinin on synthetic media, associated with a marked down-regulation of all genes involved in the biosynthesis of the two mycotoxins. Moreover, the null mutant PeΔveA strain was unable to produce patulin on apples. The analysis of gene expression revealed a global impact on secondary metabolism, as 15 of 35 backbone genes showed differential regulation on two different media. These findings support the hypothesis that VeA contributes to the pathogenicity of P. expansum and modulates its secondary metabolism.
RESUMEN
Because of its high persistence in soils, t1/2=30years, chlordecone (CLD) was classified as a persistent organic pollutant (POP) by the Stockholm Convention in 2009.The distribution of CLD over time has been heterogeneous, ranging from banana plantations to watersheds, and contaminating all environmental compartments. The aims of this study were to (i) evaluate the potential of Miscanthus species to extract chlordecone from contaminated soils, (ii) identify the growth parameters that influence the transfer of CLD from the soil to aboveground plant parts. CLD uptake was investigated in two species of Miscanthus, C4 plants adapted to tropical climates. M. sinensis and M.×giganteus were transplanted in a soil spiked with [14C]CLD at environmental concentrations (1mgkg-1) under controlled conditions. Root-shoot transfer of CLD was compared in the two species after two growing periods (2 then 6months) after transplantation. CLD was found in all plant organs, roots, rhizomes, stems, leaves, and even flower spikes. The highest concentration of CLD was in the roots, 5398±1636 (M.×giganteus) and 14842±3210ngg-1 DW (M. sinensis), whereas the concentration in shoots was lower, 152±28 (M.×giganteus) and 266±70ngg-1 DW (M. sinensis) in soil contaminated at 1mgkg-1. CLD translocation led to an acropetal gradient from the bottom to the top of the plants. CLD concentrations were also monitored over two complete growing periods (10months) in M. sinensis grown in 8.05mgkg-1 CLD contaminated soils. Concentrations decreased in M. sinensis shoots after the second growth period due to the increase in organic matters in the vicinity of the roots. Results showed that, owing to their respective biomass production, the two species were equally efficient at phytoextraction of CLD.
Asunto(s)
Biodegradación Ambiental , Clordecona/metabolismo , Poaceae/metabolismo , Contaminantes del Suelo/metabolismo , Raíces de Plantas/metabolismo , Poaceae/clasificación , SueloRESUMEN
Several strains of a new aflatoxigenic species of Aspergillus, A. korhogoensis, were isolated in the course of a screening study involving species from section Flavi found contaminating peanuts (Arachis hypogaea) and peanut paste in the Côte d'Ivoire. Based on examination of four isolates, this new species is described using a polyphasic approach. A concatenated alignment comprised of nine genes (ITS, benA, cmdA, mcm7, amdS, rpb1, preB, ppgA, and preA) was subjected to phylogenetic analysis, and resulted in all four strains being inferred as a distinct clade. Characterization of mating type for each strain revealed A. korhogoensis as a heterothallic species, since three isolates exhibited a singular MAT1-1 locus and one isolate exhibited a singular MAT1-2 locus. Morphological and physiological characterizations were also performed based on their growth on various types of media. Their respective extrolite profiles were characterized using LC/HRMS, and showed that this new species is capable of producing B- and G-aflatoxins, aspergillic acid, cyclopiazonic acid, aflavarins, and asparasones, as well as other metabolites. Altogether, our results confirm the monophyly of A. korhogoensis, and strengthen its position in the A. flavus clade, as the sister taxon of A. parvisclerotigenus.
Asunto(s)
Aflatoxinas/metabolismo , Aspergillus , Secuencia de Aminoácidos , Arachis/microbiología , Aspergillus/citología , Aspergillus/genética , Aspergillus/aislamiento & purificación , Aspergillus/metabolismo , Côte d'Ivoire , Contaminación de Alimentos/análisis , Genes Fúngicos , Filogenia , Metabolismo SecundarioRESUMEN
Chlordecone (CLD) is a persistent organic pollutant (POP) that was mainly used as an insecticide against banana weevils in the French West Indies (1972-1993). Transfer of CLD via the food chain is now the major mechanism for exposure of the population to CLD. The uptake and the transfer of CLD were investigated in shoots of maize, a C4 model plant growing under tropical climates, to estimate the exposure of livestock via feed. Maize plants were grown on soils contaminated with [(14)C]CLD under controlled conditions. The greatest part of the radioactivity was associated with roots, nearly 95%, but CLD was detected in whole shoots, concentrations in old leaves being higher than those in young ones. CLD was thus transferred from the base toward the plant top, forming an acropetal gradient of contaminant. In contrast, results evidenced the existence of a basipetal gradient of CLD concentration within leaves whose extremities accumulated larger amounts of CLD because of evapotranspiration localization. Extractable residues accounted for two-thirds of total residues both in roots and in shoots. This study highlighted the fact that the distribution of CLD contamination within grasses resulted from a conjunction between the age and evapotranspiration rate of tissues. CLD accumulation in fodder may be the main route of exposure for livestock.
Asunto(s)
Clordecona/análisis , Insecticidas/análisis , Brotes de la Planta/química , Zea mays/química , Transporte Biológico , Clordecona/metabolismo , Insecticidas/metabolismo , Raíces de Plantas/química , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/metabolismo , Zea mays/metabolismoRESUMEN
Chlordecone (CLD) was an organochlorine insecticide mainly used to struggle against banana weevils in the French West Indies. Forbidden since 1993, it has been a long-term contaminant of soils and aquatic environments. Crops growing in contaminated soils lead to human exposure by food consumption. We used radiolabeled [(14)C]-CLD to investigate the contamination ways into radish, a model of edible roots. Radish plants were able to accumulate CLD in both roots (RCF35d 647) and tubers (edible parts, CF35d 6.3). CLD was also translocated to leaves (CF35d 1.7). The contamination of tuber was mainly due to peridermic adsorption or CLD systemic translocation to the pith. TSCF was 3.44×10(-)(3). CLD diffused across periderm to internal tissues. We calculated a mean flux of diffusion J through periderm about 5.71×10(-)(14)gcm(-)(2)s(-)(1). We highlighted different contamination routes of the tuber, (i) adsorption on periderm followed by diffusion of CLD towards underlying tissues, cortex, xylem, and pith (ii) adsorption by roots and translocation by the transpiration stream followed by diffusion from xylem vessels towards inner tissues, pith, and peripheral tissues, cortex and periderm. Concerning chemical risk assessment for other tubers, contamination would depend on various parameters, the thickness of periderm and CLD periderm permeance, the origin of secondary tissues - from cortex and/or pith - , the importance of xylem flow in tuber, and the lipid amount within tuber.
Asunto(s)
Clordecona/análisis , Clordecona/metabolismo , Exposición a Riesgos Ambientales , Contaminación de Alimentos/análisis , Insecticidas/metabolismo , Raphanus/química , Raphanus/metabolismo , Adsorción , Monitoreo del Ambiente , Humanos , Insecticidas/análisis , Raíces de Plantas/química , Raíces de Plantas/metabolismo , Tubérculos de la Planta/química , Tubérculos de la Planta/metabolismo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/metabolismoRESUMEN
This study compared the metabolic fate of [(14)C]-DCP, [(14)C]-residues from radish plants, and purified [(14)C]-DCP-(acetyl)glucose following oral administration in rats. A rapid excretion of radioactivity in urine occurred for [(14)C]-DCP, [(14)C]-DCP-(acetyl)glucose, and soluble residues, 69, 85, and 69% within 48 h, respectively. Radio-HPLC profiles of 0-24 h urine from rats fed [(14)C]-DCP and [(14)C]-DCP-(acetyl)glucose were close and qualitatively similar to those obtained from plant residues. No trace of native plant residues was detected under the study conditions. The structures of the two major peaks were identified by MS as the glucuronide and the sulfate conjugates of DCP. The characterization of a dehydrated glucuronide conjugate by MS and NMR of DCP was unusual. In contrast to soluble residues, bound residues were mainly excreted in feces, 90% within 48 h, whereas total residues were eliminated in both urine and feces. For total residues, the radioactivity in feces was higher than expected from the percentage of soluble and bound residues in radish plants. This result highlighted that less absorption took place when residues were present in the plant matrix as compared to plant-free residues and DCP.
Asunto(s)
Clorofenoles/farmacocinética , Contaminantes Ambientales/farmacocinética , Glucurónidos/metabolismo , Plantas Comestibles/metabolismo , Animales , Disponibilidad Biológica , Radioisótopos de Carbono , Células Cultivadas , Clorofenoles/metabolismo , Clorofenoles/orina , Contaminantes Ambientales/metabolismo , Heces/química , Masculino , Plantas Comestibles/química , Raphanus/química , Raphanus/metabolismo , Ratas , Sulfatos/metabolismo , Nicotiana/metabolismoRESUMEN
Metabolism of xenobiotics in plants usually occurs in three phases, phase I (primary metabolism), phase II (conjugation processes), and phase III (storage). The uptake and metabolism of [(14)C]diuron and [(14)C]linuron were investigated in wheat and radish. Seeds were sown in quartz sand and irrigated with a nutrient solution of either radioactive herbicide. Plants were harvested after two weeks, and metabolites were extracted and then analyzed by radio-reverse-high-performance liquid chromatography (HPLC). Uptake of the two molecules was higher in radish compared to wheat. Translocation of parent compounds and related metabolites from roots to aerial plant parts was important, especially for radish. A large proportion of extractable residues were found in radish whereas nonextractable residues amounted to 30% in wheat, mainly associated with roots. Chemical structure of metabolites was thereafter identified by acid, alkaline, and enzymatic hydrolyses followed by electrospray ionization mass spectrometry (ESI-MS) and proton nuclear magnetic resonance spectroscopy ((1)H NMR). This study highlighted the presence of diuron and linuron metabolites conjugated to sugars in addition to N-demethylation and N-demethoxylation products.