Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Physiol Genomics ; 55(9): 357-367, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37458464

RESUMEN

High-altitude (>2,500 m) residence increases the risk of pregnancy vascular disorders such as fetal growth restriction and preeclampsia, each characterized by impaired placental function. Genetic attributes of highland ancestry confer relative protection against vascular disorders of pregnancy at high altitudes. Although ion channels have been implicated in placental function regulation, neither their expression in high-altitude placentas nor their relationship to high-altitude preeclampsia has been determined. Here, we measured the expression of 26 ion-channel genes in placentas from preeclampsia cases and normotensive controls in La Paz, Bolivia (3,850 m). In addition, we correlated gene transcription to maternal and infant ancestry proportions. Gene expression was assessed by PCR, genetic ancestry evaluated by ADMIXTURE, and ion channel proteins localized by immunofluorescence. In preeclamptic placentas, 11 genes were downregulated (ABCC9, ATP2A2, CACNA1C, KCNE1, KCNJ8, KCNK3, KCNMA1, KCNQ1, KCNQ4, PKD2, and TRPV6) and two were upregulated (KCNQ3 and SCNN1G). KCNE1 expression was positively correlated with high-altitude Amerindian ancestry and negatively correlated with non-high altitude. SCNN1G was negatively correlated with African ancestry, despite minimal African admixture. Most ion channels were localized in syncytiotrophoblasts (Cav1.2, TRPP2, TRPV6, and Kv7.1), whereas expression of Kv7.4 was primarily in microvillous membranes, Kir6.1 in chorionic plate and fetal vessels, and MinK in stromal cells. Our findings suggest a role for differential placental ion channel expression in the development of preeclampsia. Functional studies are needed to determine processes affected by these ion channels in the placenta and whether therapies directed at modulating their activity could influence the onset or severity of preeclampsia.


Asunto(s)
Placenta , Preeclampsia , Embarazo , Femenino , Humanos , Placenta/metabolismo , Preeclampsia/genética , Preeclampsia/metabolismo , Altitud , Canales Iónicos/genética , Canales Iónicos/metabolismo , Expresión Génica
2.
Am J Physiol Endocrinol Metab ; 324(6): E556-E568, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37126847

RESUMEN

Glucose, lactate, and amino acids are major fetal nutrients. During placental insufficiency-induced intrauterine growth restriction (PI-IUGR), uteroplacental weight-specific oxygen consumption rates are maintained, yet fetal glucose and amino acid supply is decreased and fetal lactate concentrations are increased. We hypothesized that uteroplacental metabolism adapts to PI-IUGR by altering nutrient allocation to maintain oxidative metabolism. Here, we measured nutrient flux rates, with a focus on nutrients shuttled between the placenta and fetus (lactate-pyruvate, glutamine-glutamate, and glycine-serine) in a sheep model of PI-IUGR. PI-IUGR fetuses weighed 40% less and had decreased oxygen, glucose, and amino acid concentrations and increased lactate and pyruvate versus control (CON) fetuses. Uteroplacental weight-specific rates of oxygen, glucose, lactate, and pyruvate uptake were similar. In PI-IUGR, fetal glucose uptake was decreased and pyruvate output was increased. In PI-IUGR placental tissue, pyruvate dehydrogenase (PDH) phosphorylation was decreased and PDH activity was increased. Uteroplacental glutamine output to the fetus and expression of genes regulating glutamine-glutamate metabolism were lower in PI-IUGR. Fetal glycine uptake was lower in PI-IUGR, with no differences in uteroplacental glycine or serine flux. These results suggest increased placental utilization of pyruvate from the fetus, without higher maternal glucose utilization, and lower fetoplacental amino acid shuttling during PI-IUGR. Mechanistically, AMP-activated protein kinase (AMPK) activation was higher and associated with thiobarbituric acid-reactive substances (TBARS) content, a marker of oxidative stress, and PDH activity in the PI-IUGR placenta, supporting a potential link between oxidative stress, AMPK, and pyruvate utilization. These differences in fetoplacental nutrient sensing and shuttling may represent adaptive strategies enabling the placenta to maintain oxidative metabolism.NEW & NOTEWORTHY These results suggest increased placental utilization of pyruvate from the fetus, without higher maternal glucose uptake, and lower amino acid shuttling in the placental insufficiency-induced intrauterine growth restriction (PI-IUGR) placenta. AMPK activation was associated with oxidative stress and PDH activity, supporting a putative link between oxidative stress, AMPK, and pyruvate utilization. These differences in fetoplacental nutrient sensing and shuttling may represent adaptive strategies enabling the placenta to maintain oxidative metabolism at the expense of fetal growth.


Asunto(s)
Insuficiencia Placentaria , Humanos , Embarazo , Femenino , Animales , Ovinos , Insuficiencia Placentaria/metabolismo , Placenta/metabolismo , Retardo del Crecimiento Fetal/metabolismo , Glutamina/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Feto/metabolismo , Glucosa/metabolismo , Ácido Láctico/metabolismo , Aminoácidos/metabolismo , Nutrientes , Glicina/metabolismo , Serina/metabolismo , Piruvatos/metabolismo , Oxígeno/metabolismo
3.
J Physiol ; 600(24): 5353-5364, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36286320

RESUMEN

High-altitude (>2500 m or 8200 ft) residence reduces uterine artery blood flow during pregnancy, contributing to an increased incidence of preeclampsia and intrauterine growth restriction. However, not all pregnancies are affected by the chronic hypoxic conditions of high-altitude residence. K+ channels play important roles in the uterine vascular adaptation to pregnancy, promoting a reduction in myogenic tone and an increase in blood flow. We hypothesized that, in pregnancies with normal fetal growth at high altitude, K+ channel-dependent vasodilatation of myometrial arteries is increased compared to those from healthy pregnant women at a lower altitude (∼1700 m). Using pharmacological modulation of two K+ channels, ATP-sensitive (KATP ) and large-conductance Ca2+ -activated (BKCa ) K+ channels, we assessed the vasodilatation of myometrial arteries from appropriate for gestational age (AGA) pregnancies in women living at high or low altitudes. In addition, we evaluated the localization of these channels in the myometrial arteries using immunofluorescence. Our results showed an endothelium-dependent increase in KATP -dependent vasodilatation in myometrial arteries from high versus low altitude, whereas vasodilatation induced by BKCa activation was reduced in these vessels. Additionally, KATP channel co-localization with endothelial markers was reduced in the high-altitude myometrial arteries, which suggested that the functional increase in KATP activity may be by mechanisms other than regulation of channel localization. These observations highlight an important contribution of K+ channels to the human uterine vascular adaptation to pregnancy at high altitude serving to maintain normal fetal growth under conditions of chronic hypoxia. KEY POINTS: High-altitude (>2500 m or 8200 ft) residence reduces uterine blood flow during pregnancy and fetal growth. Animal models of high altitude/chronic hypoxia suggest that these reductions are partially due to reduced vascular K+. channel responses, such as those elicited by large conductance Ca2+ -activated (BKCa ) and ATP-sensitive (KATP ) K+ channel activation. We found that women residing at high versus low altitude during pregnancy showed diminished myometrial artery vasodilatory responses to endothelium-independent BKCa channel activation but greater responses to endothelium-dependent KATP channel activation. Our observations indicate that KATP channels play an adaptive role in maintaining myometrial artery vasodilator sensitivity under chronic hypoxic conditions during pregnancy. Thus, KATP channels represent potential therapeutic targets for augmenting uteroplacental blood flow and, in turn, preserving fetal growth in cases of uteroplacental hypoperfusion.


Asunto(s)
Mal de Altura , Vasodilatación , Animales , Humanos , Femenino , Embarazo , Vasodilatación/fisiología , Altitud , Canales de Potasio , Arterias/fisiología , Hipoxia , Adenosina Trifosfato
4.
Am J Physiol Regul Integr Comp Physiol ; 323(5): R694-R699, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36094446

RESUMEN

In healthy near-term women, blood flow to the uteroplacental circulation is estimated as 841 mL/min, which is greater than in other mammalian species. We argue that as uterine venous Po2 sets the upper limit for O2 diffusion to the fetus, high uterine artery blood flow serves to narrow the maternal arterial-to-uterine venous Po2 gradient and thereby raise uterine vein Po2. In support, we show that the reported levels for uterine artery blood flow agree with what is required to maintain normal fetal growth. Although residence at high altitudes (>2,500 m) depresses fetal growth, not all populations are equally affected; Tibetans and Andeans have higher levels of uterine artery blood flow than newcomers and exhibit normal fetal growth. Estimates of uterine venous Po2 from the umbilical blood-gas data available from healthy Andean pregnancies indicate that their high levels of uterine artery blood flow are consistent with their reported, normal birth weights. Unknown, however, are the effects on placental gas exchange of the lower levels of uterine artery blood flow seen in high-altitude newcomers or hypoxia-associated pregnancy complications. We speculate that, by widening the maternal artery to uterine vein Po2 gradient, lower levels of uterine artery blood flow prompt metabolic changes that slow fetal growth to match O2 supply.


Asunto(s)
Placenta , Circulación Placentaria , Animales , Humanos , Embarazo , Femenino , Placenta/metabolismo , Arteria Uterina/metabolismo , Oxígeno , Desarrollo Fetal/fisiología , Mamíferos/metabolismo
5.
Int J Mol Sci ; 23(16)2022 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-36012712

RESUMEN

A progressive increase in maternal uterine and placental blood flow must occur during pregnancy to sustain the development of the fetus. Changes in maternal vasculature enable an increased uterine blood flow, placental nutrient and oxygen exchange, and subsequent fetal development. K+ channels are important modulators of vascular function, promoting vasodilation, inducing cell proliferation, and regulating cell signaling. Different types of K+ channels, such as Ca2+-activated, ATP-sensitive, and voltage-gated, have been implicated in the adaptation of maternal vasculature during pregnancy. Conversely, K+ channel dysfunction has been associated with vascular-related complications of pregnancy, including intrauterine growth restriction and pre-eclampsia. In this article, we provide an updated and comprehensive literature review that highlights the relevance of K+ channels as regulators of uterine vascular reactivity and their potential as therapeutic targets.


Asunto(s)
Placenta , Canales de Potasio , Femenino , Humanos , Placenta/metabolismo , Circulación Placentaria , Canales de Potasio/metabolismo , Embarazo , Útero/metabolismo , Vasodilatación
6.
Physiol Rep ; 9(18): e15033, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34558219

RESUMEN

Gestational hypoxemia is often associated with reduced birth weight, yet how hypoxemia controls uteroplacental nutrient metabolism and supply to the fetus is unclear. This study tested the effects of maternal hypoxemia (HOX) between 0.8 and 0.9 gestation on uteroplacental nutrient metabolism and flux to the fetus in pregnant sheep. Despite hypoxemia, uteroplacental and fetal oxygen utilization and net glucose and lactate uptake rates were similar in HOX (n = 11) compared to CON (n = 7) groups. HOX fetuses had increased lactate and pyruvate concentrations and increased net pyruvate output to the utero-placenta. In the HOX group, uteroplacental flux of alanine to the fetus was decreased, as was glutamate flux from the fetus. HOX fetuses had increased alanine and decreased aspartate, serine, and glutamate concentrations. In HOX placental tissue, we identified hypoxic responses that should increase mitochondrial efficiency (decreased SDHB, increased COX4I2) and increase lactate production from pyruvate (increased LDHA protein and LDH activity, decreased LDHB and MPC2), both resembling metabolic reprogramming, but with evidence for decreased (PFK1, PKM2), rather than increased, glycolysis and AMPK phosphorylation. This supports a fetal-uteroplacental shuttle during sustained hypoxemia whereby uteroplacental tissues produce lactate as fuel for the fetus using pyruvate released from the fetus, rather than pyruvate produced from glucose in the placenta, given the absence of increased uteroplacental glucose uptake and glycolytic gene activation. Together, these results provide new mechanisms for how hypoxemia, independent of AMPK activation, regulates uteroplacental metabolism and nutrient allocation to the fetus, which allow the fetus to defend its oxidative metabolism and growth.


Asunto(s)
Adaptación Fisiológica , Hipoxia/metabolismo , Intercambio Materno-Fetal , Circulación Placentaria , Quinasas de la Proteína-Quinasa Activada por el AMP/metabolismo , Aminoácidos/metabolismo , Animales , Femenino , Glucólisis , Hipoxia/fisiopatología , Ácido Láctico/metabolismo , Oxígeno/metabolismo , Embarazo , Ácido Pirúvico/metabolismo , Ovinos
7.
Redox Biol ; 40: 101827, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33485059

RESUMEN

During pregnancy, estrogen (E2) stimulates uterine artery blood flow (UBF) by enhancing nitric oxide (NO)-dependent vasodilation. Cystathionine γ-lyase (CSE) promotes vascular NO signaling by producing hydrogen sulfide (H2S) and by maintaining the ratio of reduced-to-oxidized intracellular glutathione (GSH/GSSG) through l-cysteine production. Because redox homeostasis can influence NO signaling, we hypothesized that CSE mediates E2 stimulation of UBF by modulating local intracellular cysteine metabolism and GSH/GSSG levels to promote redox homeostasis. Using non-pregnant ovariectomized WT and CSE-null (CSE KO) mice, we performed micro-ultrasound of mouse uterine and renal arteries to assess changes in blood flow upon exogenous E2 stimulation. We quantified serum and uterine artery NO metabolites (NOx), serum amino acids, and uterine and renal artery GSH/GSSG. WT and CSE KO mice exhibited similar baseline uterine and renal blood flow. Unlike WT, CSE KO mice did not exhibit expected E2 stimulation of UBF. Renal blood flow was E2-insensitive for both genotypes. While serum and uterine artery NOx were similar between genotypes at baseline, E2 decreased NOx in CSE KO serum. Cysteine was also lower in CSE KO serum, while citrulline and homocysteine levels were elevated. E2 and CSE deletion additively decreased GSH/GSSG in uterine arteries. In contrast, renal artery GSH/GSSG was insensitive to E2 or CSE deletion. Together, these findings suggest that CSE maintenance of uterine artery GSH/GSSG facilitates nitrergic signaling in uterine arteries and is required for normal E2 stimulation of UBF. These data have implications for pregnancy pathophysiology and the selective hormone responses of specific vascular beds.


Asunto(s)
Cistationina gamma-Liasa , Sulfuro de Hidrógeno , Animales , Cistationina gamma-Liasa/genética , Estrógenos , Femenino , Glutatión , Homeostasis , Ratones , Embarazo , Arteria Uterina
8.
Placenta ; 104: 267-276, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33472134

RESUMEN

INTRODUCTION: High-altitude (>2500 m) residence augments the risk of intrauterine growth restriction (IUGR) and preeclampsia likely due, in part, to uteroplacental hypoperfusion. Previous genomic and transcriptomic studies in humans and functional studies in mice and humans suggest a role for AMP-activated protein kinase (AMPK) pathway in protecting against hypoxia-associated IUGR. AMPK is a metabolic sensor activated by hypoxia that is ubiquitously expressed in vascular beds and placenta. METHODS: We measured gene expression and protein levels of AMPK and its upstream regulators and downstream targets in human placentas from high (>2500 m) vs. moderate (~1700 m) and low (~100 m) altitude. RESULTS: We found that phosphorylated AMPK protein levels and its downstream target TSC2 were increased in placentas from high and moderate vs. low altitude, whereas the phosphorylated form of the downstream target translation repressor protein 4E-BP1 was increased in high compared to moderate as well as low altitude placentas. Mean birth weights progressively fell with increasing altitude but no infants, by study design, were clinically growth-restricted. Gene expression analysis showed moderate increases in PRKAG2, encoding the AMPK γ2 subunit, and mechanistic target of rapamycin, MTOR, expression. DISCUSSION: These results highlight a differential regulation of placental AMPK pathway activation in women residing at low, moderate or high altitude during pregnancy, suggesting AMPK may be serving as a metabolic regulator for integrating hypoxic stimuli with placental function.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Altitud , Regulación de la Expresión Génica , Placenta/metabolismo , Transducción de Señal/genética , Adulto , Femenino , Humanos , Hipoxia/metabolismo , Embarazo
9.
Am J Physiol Heart Circ Physiol ; 319(1): H203-H212, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32502374

RESUMEN

High-altitude (>2,500 m) residence increases the incidence of intrauterine growth restriction (IUGR) due, in part, to reduced uterine artery blood flow and impaired myometrial artery (MA) vasodilator response. A role for the AMP-activated protein kinase (AMPK) pathway in protecting against hypoxia-associated IUGR is suggested by genomic and transcriptomic studies in humans and functional studies in mice. AMPK is a hypoxia-sensitive metabolic sensor with vasodilatory properties. Here we hypothesized that AMPK-dependent vasodilation was increased in MAs from high versus low-altitude (<1,700 m) Colorado women with appropriate for gestational age (AGA) pregnancies and reduced in IUGR pregnancies regardless of altitude. Vasoreactivity studies showed that, in AGA pregnancies, MAs from high-altitude women were more sensitive to vasodilation by activation of AMPK with A769662 due chiefly to increased endothelial nitric oxide production, whereas MA responses to AMPK activation in the low-altitude women were endothelium independent. MAs from IUGR compared with AGA pregnancies had blunted vasodilator responses to acetylcholine at high altitude. We concluded that 1) blunted vasodilator responses in IUGR pregnancies confirm the importance of MA vasodilation for normal fetal growth and 2) the increased sensitivity to AMPK activation in AGA pregnancies at high altitude suggests that AMPK activation helped maintain MA vasodilation and fetal growth. These results highlight a novel mechanism for vasodilation of MAs under conditions of chronic hypoxia and suggest that AMPK activation could provide a therapy for increasing uteroplacental blood flow and improving fetal growth in IUGR pregnancies.NEW & NOTEWORTHY Intrauterine growth restriction (IUGR) impairs infant well- being and increases susceptibility to later-in-life diseases for mother and child. Our study reveals a novel role for AMPK in vasodilating the myometrial artery (MA) from women residing at high altitude (>2,500 m) with appropriate for gestational age pregnancies but not in IUGR pregnancies at any altitude.


Asunto(s)
Mal de Altura/metabolismo , Arterias/metabolismo , Retardo del Crecimiento Fetal/metabolismo , Miometrio/irrigación sanguínea , Proteínas Quinasas/metabolismo , Vasodilatación , Quinasas de la Proteína-Quinasa Activada por el AMP , Adulto , Mal de Altura/fisiopatología , Arterias/efectos de los fármacos , Arterias/fisiopatología , Compuestos de Bifenilo , Femenino , Retardo del Crecimiento Fetal/fisiopatología , Humanos , Óxido Nítrico/metabolismo , Embarazo , Pironas/farmacología , Tiofenos/farmacología
10.
J Physiol ; 598(18): 4093-4105, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32592403

RESUMEN

KEY POINTS: Pregnancy at high altitude is associated with a greater incidence of fetal growth restriction due, in part, to lesser uterine artery blood flow. AMP-activated protein kinase (AMPK) activation vasodilates arteries and may increase uterine artery blood flow. In this study, pharmacological activation of AMPK by the drug AICAR improved fetal growth and elevated uterine artery blood flow. These results suggest that AMPK activation is a potential strategy for improving fetal growth and raising uterine artery blood flow in pregnancy, which may be important in pregnancy disorders characterized by uteroplacental ischaemia and/or fetal hypoxia. ABSTRACT: Uteroplacental hypoxia is associated with pregnancy disorders such as intrauterine growth restriction and preeclampsia, which are characterized by uteroplacental ischaemia and/or fetal hypoxia. Activation of AMP-activated protein kinase (AMPK) results in vasodilatation and is therefore a potential therapeutic strategy for restoring uteroplacental perfusion in pregnancy disorders. In this study, C57Bl/6 mice were treated with subcutaneous pellets containing vehicle, the AMPK activator AICAR (200 mg kg-1 day-1 ), or the AMPK inhibitor Compound C (20 mg kg-1 day-1 ) beginning on gestational day 13.5, and were exposed to hypoxia starting on gestational day 14.5 that induced intrauterine growth restriction. Pharmacological AMPK activation by AICAR partially prevented hypoxia-induced fetal growth restriction (P < 0.01), due in part to increased uterine artery blood flow (P < 0.0001). The proportion of total cardiac output flowing through the uterine artery was increased with AICAR in hypoxic mice (P < 0.001), suggesting that the vasodilator effect of AICAR was selective for the uterine circulation. Further, pharmacological inhibition of AMPK with Compound C reduced uterine artery diameter and increased uterine artery contractility in normoxic mice, providing evidence that physiological levels of AMPK activation are necessary for vasodilatation in healthy pregnancy. Two-way ANOVA analyses indicated that hypoxia reduced AMPK activation in the uterine artery and placenta, and AICAR increased AMPK activation in these tissues compared to vehicle. These findings provide support for further investigation into the utility of pharmacological AMPK activation for treatment of fetal growth restriction.


Asunto(s)
Retardo del Crecimiento Fetal , Arteria Uterina , Proteínas Quinasas Activadas por AMP , Aminoimidazol Carboxamida/análogos & derivados , Animales , Femenino , Retardo del Crecimiento Fetal/tratamiento farmacológico , Hipoxia , Ratones , Circulación Placentaria , Embarazo , Ribonucleótidos
11.
Br J Pharmacol ; 177(12): 2765-2778, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31975425

RESUMEN

BACKGROUND AND PURPOSE: The enteric neurotransmitter nitric oxide (NO) regulates gastrointestinal motility by relaxing smooth muscle. Pharmacological cAMP induction also relaxes gastrointestinal smooth muscle, but it is uncertain whether cAMP augments or suppresses enteric NO signalling. In other organ systems, cAMP can increase neuronal NO production by stimulating protein kinase A (PKA) to phosphorylate neuronal NOS (nNOS) Serine-1412 (S1412). We hypothesized that cAMP also increases nNOS S1412 phosphorylation by PKA in enteric neurons to augment nitrergic relaxation of mouse ileum. EXPERIMENTAL APPROACH: We measured contractile force and nNOS S1412 phosphorylation in ileal rings suspended in an organ bath. We used forskolin to induce cAMP-dependent relaxation of wild type, nNOSS1412A knock-in and nNOSα-null ileal rings in the presence or absence of PKA, protein kinase B (Akt) and NOS inhibitors. KEY RESULTS: Forskolin stimulated phosphorylation of nNOS S1412 in mouse ileum. Forskolin relaxed nNOSα-null and nNOSS1412A ileal rings less than wild-type ileal rings. PKA inhibition blocked forskolin-induced nNOS phosphorylation and attenuated relaxation of wild type but not nNOSS1412A ileum. Akt inhibition did not alter nNOS phosphorylation with forskolin but did attenuate relaxation of wild type and nNOSS1412A . NOS inhibition with L-NAME eliminated the effects of PKA and Akt inhibitors on relaxation. CONCLUSION AND IMPLICATIONS: PKA phosphorylation of nNOS S1412 augments forskolin-induced nitrergic ileal relaxation. The relationship between cAMP/PKA and NO is therefore synergistic in enteric nitrergic neurons. Because NO regulates gut motility, selective modulation of enteric neuronal cAMP synthesis may be useful for the treatment of gastrointestinal motility disorders.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico , Óxido Nítrico , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Íleon/metabolismo , Ratones , NG-Nitroarginina Metil Éster , Óxido Nítrico Sintasa de Tipo I/metabolismo , Fosforilación
12.
FASEB J ; 34(3): 4283-4292, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31970838

RESUMEN

The environmental hypoxia of high altitude (HA) increases the incidence of intrauterine growth restriction (IUGR) approximately threefold. The peroxisome proliferator-activated receptor γ (PPAR-γ), a ligand-activated nuclear receptor that promotes vasorelaxation by increasing nitric oxide and downregulating endothelin-1 (ET-1) production, has been implicated in IUGR. Based on our prior work indicating that pharmacologic activation of the PPARγ pathway protects against hypoxia-associated IUGR, we used an experimental murine model to determine whether such effects may be attributed to vasodilatory effects in the uteroplacental circulation. Using wire myography, ex vivo vasoreactivity studies were conducted in uterine arteries (UtA) isolated from pregnant mice exposed to hypoxia or normoxia from gestational day 14.5 to 18.5. Exposure to troglitazone, a high-affinity PPARγ agonist-induced vasorelaxation in UtA preconstricted with phenylephrine, with HA-UtA showing increased sensitivity. Troglitazone blunted ET-1-induced contraction of UtA in hypoxic and normoxic dams equivalently. Immunohistological analysis revealed enhanced staining for ET-1 receptors in the placental labyrinthine zone in hypoxic compared to normoxic dams. Our results suggest that pharmacologic PPAR-γ activation, via its vasoactive properties, may protect the fetal growth under hypoxic conditions by improving uteroplacental perfusion and thereby justify further investigation into PPARγ as a therapeutic target for IUGR in pregnancies complicated by hypoxia.


Asunto(s)
Endotelina-1/metabolismo , PPAR gamma/metabolismo , Placenta/metabolismo , Arteria Uterina/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Retardo del Crecimiento Fetal/metabolismo , Hipoxia/metabolismo , Inmunohistoquímica , Ratones , Fenilefrina/farmacología , Placenta/efectos de los fármacos , Embarazo , Tiazolidinedionas/farmacología , Troglitazona/farmacología , Arteria Uterina/efectos de los fármacos
13.
J Appl Physiol (1985) ; 128(1): 127-133, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31804891

RESUMEN

Women residing at high altitudes deliver infants of lower birth weight than at sea level. Birth weight correlates with placental system A-mediated amino acid transport capacity, and severe environmental hypoxia reduces system A activity in isolated trophoblast and the mouse placenta. However, the effect of high altitude on human placental amino acid transport remains unknown. We hypothesized that microvillous membrane (MVM) system A and system L amino acid transporter activity is lower in placentas of women living at high altitude compared with low-altitude controls. Placentas were collected at term from healthy pregnant women residing at high altitude (HA; >2,500 m; n = 14) or low altitude (LA; <1,700 m; n = 14) following planned, unlabored cesarean section. Birth weight, but not placenta weight, was 13% lower in HA pregnancies (2.88 ± 0.11 kg) compared with LA (3.30 ± 0.07 kg, P < 0.01). MVM erythropoietin receptor abundance, determined by immunoblot, was greater in HA than in LA placentas, consistent with lower placental oxygen levels at HA. However, there was no effect of altitude on MVM system A or L activity, determined by Na+-dependent [14C]methylaminoisobutyric acid uptake and [3H]leucine uptake, respectively. MVM abundance of glucose transporters (GLUTs) 1 and 4 and basal membrane GLUT4 were also similar in LA and HA placentas. Low birth weights in the neonates of women residing at high altitude are not a consequence of reduced placental amino acid transport capacity. These observations are in general agreement with studies of IUGR babies at low altitude, in which MVM system A activity is downregulated only in growth-restricted babies with significant compromise.NEW & NOTEWORTHY Babies born at high altitude are smaller than at sea level. Birth weight is dependent on growth in utero and, in turn, placental nutrient transport. We determined amino acid transport capacity in placentas collected from women resident at low and high altitude. Altitude did not affect system A amino acid transport across the syncytiotrophoblast microvillous membrane, suggesting that impaired placental amino acid transport does not contribute to reduced birth weight in this high-altitude population.


Asunto(s)
Altitud , Aminoácidos/metabolismo , Peso al Nacer , Retardo del Crecimiento Fetal/metabolismo , Placenta/metabolismo , Trofoblastos/metabolismo , Adulto , Transporte Biológico , Femenino , Retardo del Crecimiento Fetal/patología , Humanos , Masculino , Placenta/patología , Embarazo , Trofoblastos/patología , Adulto Joven
14.
Biol Reprod ; 102(3): 660-670, 2020 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-31711123

RESUMEN

Incomplete maternal vascular responses to pregnancy contribute to pregnancy complications including intrauterine growth restriction (IUGR) and preeclampsia. We aimed to characterize maternal vascular dysfunction in a murine model of fetal growth restriction as an approach toward identifying targetable pathways for improving pregnancy outcomes. We utilized a murine model of late-gestation hypoxia-induced IUGR that reduced E18.5 fetal weight by 34%. Contrary to our hypothesis, uterine artery blood flow as measured in vivo by Doppler ultrasound was increased in mice housed under hypobaric hypoxia (385 mmHg; 5500 m) vs normoxia (760 mmHg; 0 m). Using wire myography, uterine arteries isolated from hypoxic mice had similar vasodilator responses to the two activators A769662 and acetylcholine as those from normoxic mice, although the contribution of an increase in nitric oxide production to uterine artery vasodilation was reduced in the hypoxic vs normoxic groups. Vasoconstrictor responses to phenylephrine and potassium chloride were unaltered by hypoxia. The levels of activated adenosine monophosphate-activated protein kinase (AMPK) were reduced with hypoxia in both the uterine artery and placenta as measured by western blot and immunohistochemistry. We concluded that the rise in uterine artery blood flow may be compensatory to hypoxia but was not sufficient to prevent fetal growth restriction. Although AMPK signaling was reduced by hypoxia, AMPK was still receptive to pharmacologic activation in the uterine arteries in which it was a potent vasodilator. Thus, AMPK activation may represent a new therapy for pregnancy complications involving reduced uteroplacental perfusion.


Asunto(s)
Retardo del Crecimiento Fetal/fisiopatología , Hipoxia/fisiopatología , Circulación Placentaria/fisiología , Arteria Uterina/fisiología , Acetilcolina/farmacología , Animales , Femenino , Retardo del Crecimiento Fetal/diagnóstico por imagen , Hipoxia/diagnóstico por imagen , Ratones , Fenilefrina/farmacología , Circulación Placentaria/efectos de los fármacos , Embarazo , Ultrasonografía Doppler , Arteria Uterina/diagnóstico por imagen , Arteria Uterina/efectos de los fármacos , Vasoconstrictores/farmacología , Vasodilatación/efectos de los fármacos , Vasodilatadores/farmacología
15.
Proc Natl Acad Sci U S A ; 116(35): 17541-17546, 2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-31405982

RESUMEN

Nitric oxide (NO) is a major inhibitory neurotransmitter that mediates nonadrenergic noncholinergic (NANC) signaling. Neuronal NO synthase (nNOS) is activated by Ca2+/calmodulin to produce NO, which causes smooth muscle relaxation to regulate physiologic tone. nNOS serine1412 (S1412) phosphorylation may reduce the activating Ca2+ requirement and sustain NO production. We developed and characterized a nonphosphorylatable nNOSS1412A knock-in mouse and evaluated its enteric neurotransmission and gastrointestinal (GI) motility to understand the physiologic significance of nNOS S1412 phosphorylation. Electrical field stimulation (EFS) of wild-type (WT) mouse ileum induced nNOS S1412 phosphorylation that was blocked by tetrodotoxin and by inhibitors of the protein kinase Akt but not by PKA inhibitors. Low-frequency depolarization increased nNOS S1412 phosphorylation and relaxed WT ileum but only partially relaxed nNOSS1412A ileum. At higher frequencies, nNOS S1412 had no effect. nNOSS1412A ileum expressed less phosphodiesterase-5 and was more sensitive to relaxation by exogenous NO. Under non-NANC conditions, peristalsis and segmentation were faster in the nNOSS1412A ileum. Together these findings show that neuronal depolarization stimulates enteric nNOS phosphorylation by Akt to promote normal GI motility. Thus, phosphorylation of nNOS S1412 is a significant regulatory mechanism for nitrergic neurotransmission in the gut.


Asunto(s)
Motilidad Gastrointestinal , Íleon/fisiología , Neuronas/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Alanina/metabolismo , Animales , GMP Cíclico/metabolismo , Motilidad Gastrointestinal/genética , Ratones , Músculo Liso/metabolismo , Mutación , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo I/genética , Fosforilación , Ratas
16.
FASEB J ; 33(8): 8999-9007, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31039323

RESUMEN

The hypoxia of high-altitude (HA) residence increases the risk of intrauterine growth restriction (IUGR) and preeclampsia 3-fold, augmenting perinatal morbidity and mortality and the risk for childhood and adult disease. Currently, no effective therapies exist to prevent these vascular disorders of pregnancy. The peroxisome proliferator-activated receptor γ (PPAR-γ) is an important regulator of uteroplacental vascular development and function and has been implicated in the pathogenesis of IUGR and preeclampsia. Here, we used a model of HA pregnancy in mice to determine whether hypoxia-induced fetal growth restriction reduces placental PPAR-γ protein expression and placental vascularization and, if so, to evaluate the effectiveness of the selective PPAR-γ agonist pioglitazone (PIO) for preventing hypoxia-induced IUGR. Hypoxia resulted in asymmetric IUGR, placental insufficiency, and reduced placental PPAR-γ expression; PIO prevented approximately half of the fetal growth restriction and attenuated placental insufficiency. PIO did not affect fetal growth under normoxia. Although PIO was beneficial for fetal growth, PIO treatment reduced placental vascular density of the labrynthine zone in normoxic and hypoxic (Hx) conditions, and mean vascular area was reduced in the Hx group. Our results suggest that pharmacological PPAR-γ activation is a potential strategy for preventing IUGR in pregnancies complicated by hypoxia, although further studies are needed to identify its likely metabolic or vascular mechanisms.-Lane, S. L., Dodson, R. B., Doyle, A. S., Park, H., Rathi, H., Matarrazo, C. J., Moore, L. G., Lorca, R. A., Wolfson, G. H., Julian, C. G. Pharmacological activation of peroxisome proliferator-activated receptor γ (PPAR-γ) protects against hypoxia-associated fetal growth restriction.


Asunto(s)
Retardo del Crecimiento Fetal/prevención & control , Hipoxia Fetal/complicaciones , PPAR gamma/agonistas , Pioglitazona/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , Mal de Altura/complicaciones , Animales , Modelos Animales de Enfermedad , Femenino , Retardo del Crecimiento Fetal/etiología , Retardo del Crecimiento Fetal/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Placenta/irrigación sanguínea , Placenta/efectos de los fármacos , Placenta/metabolismo , Insuficiencia Placentaria/etiología , Insuficiencia Placentaria/metabolismo , Insuficiencia Placentaria/prevención & control , Preeclampsia/etiología , Preeclampsia/metabolismo , Preeclampsia/prevención & control , Embarazo
17.
Hypertension ; 73(6): 1319-1326, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31006328

RESUMEN

The chronic hypoxia of high-altitude (HA) residence reduces uterine artery blood flow during pregnancy, likely contributing to an increased frequency of preeclampsia and intrauterine growth restriction. We hypothesized that this lesser pregnancy blood flow rise was due, in part, to reduced vasodilation of myometrial arteries (MAs). Here, we assessed MA vasoreactivity in healthy residents of high (2902±39 m) or low altitude (LA; 1669±10 m). MA contractile responses to potassium chloride, phenylephrine, or the thromboxane A2 agonist U46619 did not differ between LA and HA women. Acetylcholine vasodilated phenylephrine or U466119 preconstricted MAs at LA, yet had no effect on HA MAs. In contrast, another vasodilator, bradykinin, relaxed MAs from both altitudes similarly. At LA, the NO synthase inhibitor L-NG-nitroarginine methyl ester decreased both acetylcholine and bradykinin vasodilation by 56% and 33%, respectively. L-NG-nitroarginine methyl ester plus the COX (cyclooxygenase) inhibitor indomethacin had similar effects on acetylcholine and bradykinin vasodilation (68% and 42% reduction, respectively) as did removing the endothelium (78% and 50% decrease, respectively), suggesting a predominantly NO-dependent vasodilation at LA. However, at HA, L-NG-nitroarginine methyl ester did not change bradykinin vasodilation, whereas indomethacin or endothelium removal decreased it by 28% and 72%, respectively, indicating impaired NO signaling at HA. Suggesting that the impairment was downstream of eNOS (endothelial NO synthase), HA attenuated the vasodilation elicited by the NO donor sodium nitroprusside. We concluded that reduced NO-dependent MA vasodilation likely contributes to diminished uteroplacental perfusion in HA pregnancies.


Asunto(s)
Altitud , Endotelio Vascular/fisiopatología , Músculo Liso Vascular/fisiopatología , Óxido Nítrico Sintasa/metabolismo , Preeclampsia/etiología , Arteria Uterina/fisiopatología , Vasodilatación/fisiología , Adolescente , Adulto , Presión Sanguínea/fisiología , Femenino , Humanos , Persona de Mediana Edad , Preeclampsia/metabolismo , Preeclampsia/fisiopatología , Embarazo , Factores de Riesgo , Adulto Joven
18.
J Physiol ; 596(6): 1019-1033, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29319186

RESUMEN

KEY POINTS: The uterine artery (UA) markedly vasodilates during pregnancy to direct blood flow to the developing fetus. Inadequate UA vasodilatation leads to intrauterine growth restriction and fetal death. The large-conductance voltage- and Ca2+ -activated K+ (BKCa ) channel promotes UA vasodilatation during pregnancy. We report that BKCa channel activation increases the UA diameter at late pregnancy stages in mice. Additionally, a BKCa channel auxiliary subunit, γ1, participates in this process by increasing channel activation and inducing UA vasodilatation at late pregnancy stages. Our results highlight the importance of the BKCa channel and its γ1-subunit for UA functional changes during pregnancy. ABSTRACT: Insufficient vasodilatation of the uterine artery (UA) during pregnancy leads to poor utero-placental perfusion, contributing to intrauterine growth restriction and fetal loss. Activity of the large-conductance Ca2+ -activated K+ (BKCa ) channel increases in the UA during pregnancy, and its inhibition reduces uterine blood flow, highlighting a role of this channel in UA adaptation to pregnancy. The auxiliary γ1-subunit increases BKCa activation in vascular smooth muscle, but its role in pregnancy-associated UA remodelling is unknown. We explored whether the BKCa and its Î³1-subunit contribute to UA remodelling during pregnancy. Doppler imaging revealed that, compared to UAs from wild-type (WT) mice, UAs from BKCa knockout (BKCa-/- ) mice had lower resistance at pregnancy day 14 (P14) but not at P18. Lumen diameters were twofold larger in pressurized UAs from P18 WT mice than in those from non-pregnant mice, but this difference was not seen in UAs from BKCa-/- mice. UAs from pregnant WT mice constricted 20-50% in response to the BKCa blocker iberiotoxin (IbTX), whereas UAs from non-pregnant WT mice only constricted 15%. Patch-clamp analysis of WT UA smooth muscle cells confirmed that BKCa activity increased over pregnancy, showing three distinct voltage sensitivities. The γ1-subunit transcript increased 7- to 10-fold during pregnancy. Furthermore, γ1-subunit knockdown reduced IbTX sensitivity in UAs from pregnant mice, whereas γ1-subunit overexpression increased IbTX sensitivity in UAs from non-pregnant mice. Finally, at P18, γ1-knockout (γ1-/- ) mice had smaller UA diameters than WT mice, and IbTX-mediated vasoconstriction was prevented in UAs from γ1-/- mice. Our results suggest that the γ1-subunit increases BKCa activation in UAs during pregnancy.


Asunto(s)
Arterias/fisiología , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Músculo Liso Vascular/metabolismo , Embarazo/fisiología , Útero/irrigación sanguínea , Vasodilatación , Animales , Femenino , Feto/fisiología , Canales de Potasio de Gran Conductancia Activados por el Calcio/genética , Ratones , Ratones Noqueados , Músculo Liso Vascular/citología , Subunidades de Proteína
19.
J Mol Endocrinol ; 60(1): R9-R22, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29097590

RESUMEN

Abnormal placental function is well-established as a major cause for poor pregnancy outcome. Placental blood flow within the maternal uteroplacental compartment, the fetoplacental circulation or both is a vital factor in mediating placental function. Impairment in flow in either or both vasculatures is a significant risk factor for adverse pregnancy outcome, potentially impacting maternal well-being, affecting immediate neonatal health and even influencing the long-term health of the infant. Much remains unknown regarding the mechanistic underpinnings of proper placental blood flow. This review highlights the currently recognized molecular and cellular mechanisms in the development of normal uteroplacental and fetoplacental blood flows. Utilizing the entities of preeclampsia and fetal growth restriction as clinical phenotypes that are often evident downstream of abnormal placental blood flow, mechanisms underlying impaired uteroplacental and fetoplacental blood flows are also discussed. Deficiencies in knowledge, which limit the efficacy of clinical care, are also highlighted, underscoring the need for continued research on normal and abnormal placental blood flows.


Asunto(s)
Placenta/irrigación sanguínea , Femenino , Humanos , Modelos Biológicos , Circulación Placentaria , Embarazo , Flujo Sanguíneo Regional , Útero/irrigación sanguínea
20.
PLoS One ; 12(7): e0182068, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28750098

RESUMEN

Large conductance voltage- and Ca2+-activated K+ (BKCa) channels are essential regulators of membrane excitability in a wide variety of cells and tissues. An important mechanism of modulation of BKCa channel activity is its association with auxiliary subunits. In smooth muscle cells, the most predominant regulatory subunit of BKCa channels is the ß1-subunit. We have previously described that BKCa channels with distinctive N-terminal ends (starting with the amino acid sequence MDAL, MSSN or MANG) are differentially modulated by the ß1-subunit, but not by the ß2. Here we extended our studies to understand how the distinct N-terminal regions differentially modulate channel activity by ß-subunits. We recorded inside-out single-channel currents from HEK293T cells co-expressing the BKCa containing three N-terminal sequences with two ß1-ß2 chimeric constructs containing the extracellular loop of ß1 or ß2, and the transmembrane and cytoplasmic domains of ß2 or ß1, respectively. Both ß chimeric constructs induced leftward shifts of voltage-activation curves of channels starting with MANG and MDAL, in the presence of 10 or 100 µM intracellular Ca2+. However, MSSN showed no shift of the voltage-activation, at the same Ca2+ concentrations. The presence of the extracellular loop of ß1 in the chimera resembled results seen with the full ß1 subunit, suggesting that the extracellular region of ß1 might be responsible for the lack of modulation observed in MSSN. We further studied a poly-serine stretch present in the N-terminal region of MSSN and observed that the voltage-activation curves of BKCa channels either containing or lacking this poly-serine stretch were leftward shifted by ß1-subunit in a similar way. Overall, our results provide further insights into the mechanism of modulation of the different N-terminal regions of the BKCa channel by ß-subunits and highlight the extension of this region of the channel as a form of modulation of channel activity.


Asunto(s)
Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/química , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/metabolismo , Subunidades beta de los Canales de Potasio de Gran Conductancia Activados por el Calcio/química , Subunidades beta de los Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Células HEK293 , Humanos , Activación del Canal Iónico , Cinética , Péptidos/metabolismo , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA