Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Foods ; 11(12)2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35741992

RESUMEN

Dysphagia is a condition in which the swallowing mechanism is impaired. It is most often a result of a stroke. Dysphagia has serious consequences, including choking and aspiration pneumonia, which can both be fatal. The population that is most affected by it is the elderly. Texture-modified diets are part of the treatment plan for dysphagia. This bland, restrictive diet often contributes to malnutrition in patients with dysphagia. Both energy and protein intake are of concern, which is especially worrying, as it affects the elderly. Making texture-modified diets more appealing is one method to increase food intake. As a recent technology, 3D food printing has great potential to increase the appeal of textured foods. With extrusion-based printing, both protein and vegetable products have already been 3D printed that fit into the texture categories provided by the International Dysphagia Diet Standardization Initiative. Another exciting advancement is 4D food printing which could make foods even more appealing by incorporating color change and aroma release following a stimulus. The ultra-processed nature of 3D-printed foods is of nutritional concern since this affects the digestion of the food and negatively affects the gut microbiome. There are mitigating strategies to this issue, including the addition of hydrocolloids that increase stomach content viscosity and the addition of probiotics. Therefore, 3D food printing is an improved method for the production of texture-modified diets that should be further explored.

2.
PLoS One ; 15(7): e0231918, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32702012

RESUMEN

Determining the concentration of nucleic acids in biological samples precisely and reliably still is a challenge. In particular when only very small sample quantities are available for analysis, the established fluorescence-based methods give insufficient results. Photobleaching is seen as the main reason for this. In this paper we present a method to correct for the photobleaching effect. Using confocal microscopy with single molecule sensitivity, we derived calibration curves from DNA solutions with defined fragment length. We analyzed dilution series over a wide range of concentrations (1 pg/µl-1000 pg/µl) and measured their specific diffusion coefficients employing fluorescence correlation spectroscopy. Using this information, we corrected the measured fluorescence intensity of the calibration solutions for photobleaching effects. We evaluated our method by analyzing a series of DNA mixtures of varying composition. For fragments smaller than 1000 bp, our method allows to determine sample concentrations with high precision in very small sample quantities (< 2 µl with concentrations < 20 pg/µl). Once the technical parameters are determined and remain stable in an established process, our improved calibration method will make measuring molecular biological samples of unknown sequence composition more efficient, accurate and sample-saving than previous methods.


Asunto(s)
ADN/análisis , ADN/química , Microscopía Confocal , Fotoblanqueo , Difusión , Límite de Detección , Soluciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...