Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Aging Cell ; 19(11): e13260, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33048427

RESUMEN

Thyroid function is central in the control of physiological and pathophysiological processes. Studies in animal models and human research have determined that thyroid hormones modulate cellular processes relevant for aging and for the majority of age-related diseases. While several studies have associated mild reductions on thyroid hormone function with exceptional longevity in animals and humans, alterations in thyroid hormones are serious medical conditions associated with unhealthy aging and premature death. Moreover, both hyperthyroidism and hypothyroidism have been associated with the development of certain types of diabetes and cancers, indicating a great complexity of the molecular mechanisms controlled by thyroid hormones. In this review, we describe the latest findings in thyroid hormone research in the field of aging, diabetes, and cancer, with a special focus on hepatocellular carcinomas. While aging studies indicate that the direct modulation of thyroid hormones is not a viable strategy to promote healthy aging or longevity and the development of thyromimetics is challenging due to inefficacy and potential toxicity, we argue that interventions based on the use of modulators of thyroid hormone function might provide therapeutic benefit in certain types of diabetes and cancers.


Asunto(s)
Envejecimiento/fisiología , Diabetes Mellitus/fisiopatología , Neoplasias/fisiopatología , Glándula Tiroides/fisiopatología , Hormonas Tiroideas/metabolismo , Humanos , Factores de Riesgo
2.
Aging (Albany NY) ; 11(18): 7746-7779, 2019 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-31518338

RESUMEN

An inverse correlation between thyroid hormone levels and longevity has been reported in several species and reduced thyroid hormone levels have been proposed as a biomarker for healthy aging and metabolic fitness. However, hypothyroidism is a medical condition associated with compromised health and reduced life expectancy. Herein, we show, using wild-type and the Pax8 ablated model of hypothyroidism in mice, that hyperthyroidism and severe hypothyroidism are associated with an overall unhealthy status and shorter lifespan. Mild hypothyroid Pax8 +/- mice were heavier and displayed insulin resistance, hepatic steatosis and increased prevalence of liver cancer yet had normal lifespan. These pathophysiological conditions were precipitated by hepatic mitochondrial dysfunction and oxidative damage accumulation. These findings indicate that individuals carrying mutations on PAX8 may be susceptible to develop liver cancer and/or diabetes and raise concerns regarding the development of interventions aiming to modulate thyroid hormones to promote healthy aging or lifespan in mammals.


Asunto(s)
Envejecimiento/metabolismo , Hígado Graso/patología , Resistencia a la Insulina/fisiología , Neoplasias Hepáticas/patología , Hígado/patología , Hormonas Tiroideas/sangre , Animales , Hígado Graso/genética , Hígado Graso/metabolismo , Hígado/metabolismo , Neoplasias Hepáticas/sangre , Masculino , Ratones , Ratones Noqueados , Factor de Transcripción PAX8/genética , Factor de Transcripción PAX8/metabolismo
3.
Br J Pharmacol ; 174(21): 3795-3810, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28800677

RESUMEN

BACKGROUND AND PURPOSE: Thyroid hormones induce several changes in whole body metabolism that are known to improve metabolic homeostasis. However, adverse side effects have prevented its use in the clinic. In view of the promising effects of thyroid hormones, we investigated the effects of levothyroxine supplementation on glucose homeostasis. EXPERIMENTAL APPROACH: C57BL/6 mice were treated with levothyroxine from birth to 24 weeks of age, when mice were killed. The effects of levothyroxine supplementation on metabolic health were determined. C57BL/6 mice treated with levothyroxine for 2 weeks and then challenged with streptozotocin to monitor survival. Mechanistic experiments were conducted in the pancreas, liver and skeletal muscle. RIP-B7.1 mice were treated with levothyroxine for 2 weeks and were subsequently immunized to trigger experimental autoimmune diabetes (EAD). Metabolic tests were performed. Mice were killed and metabolic tissues were extracted for immunohistological analyses. KEY RESULTS: Long-term levothyroxine supplementation enhanced glucose clearance and reduced circulating glucose in C57BL/6 mice. Levothyroxine increased simultaneously the proliferation and apoptosis of pancreatic beta cells, promoting the maintenance of a highly insulin-expressing beta cell population. Levothyroxine increased circulating insulin levels, inducing sustained activation of IRS1-AKT signalling in insulin-target tissues. Levothyroxine-treated C57BL/6 mice challenged with streptozotocin exhibited extended survival. Levothyroxine blunted the onset of EAD in RIP-B7.1 mice by inducing beta cell proliferation and preservation of insulin-expressing cells. CONCLUSIONS AND IMPLICATIONS: Interventions based on the use of thyroid hormones or thyromimetics could be explored to provide therapeutic benefit in patients with type 1 diabetes mellitus.


Asunto(s)
Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Glucosa/metabolismo , Tiroxina/farmacología , Animales , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Femenino , Insulina/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Estreptozocina , Tiroxina/administración & dosificación
4.
Diabetologia ; 59(4): 755-65, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26813254

RESUMEN

AIMS/HYPOTHESIS: A strategy to enhance pancreatic islet functional beta cell mass (BCM) while restraining inflammation, through the manipulation of molecular and cellular targets, would provide a means to counteract the deteriorating glycaemic control associated with diabetes mellitus. The aims of the current study were to investigate the therapeutic potential of such a target, the islet-enriched and diabetes-linked transcription factor paired box 4 (PAX4), to restrain experimental autoimmune diabetes (EAD) in the RIP-B7.1 mouse model background and to characterise putative cellular mechanisms associated with preserved BCM. METHODS: Two groups of RIP-B7.1 mice were genetically engineered to: (1) conditionally express either PAX4 (BPTL) or its diabetes-linked mutant variant R129W (mutBPTL) using doxycycline (DOX); and (2) constitutively express luciferase in beta cells through the use of RIP. Mice were treated or not with DOX, and EAD was induced by immunisation with a murine preproinsulin II cDNA expression plasmid. The development of hyperglycaemia was monitored for up to 4 weeks following immunisation and alterations in the BCM were assessed weekly by non-invasive in vivo bioluminescence intensity (BLI). In parallel, BCM, islet cell proliferation and apoptosis were evaluated by immunocytochemistry. Alterations in PAX4- and PAX4R129W-mediated islet gene expression were investigated by microarray profiling. PAX4 preservation of endoplasmic reticulum (ER) homeostasis was assessed using thapsigargin, electron microscopy and intracellular calcium measurements. RESULTS: PAX4 overexpression blunted EAD, whereas the diabetes-linked mutant variant PAX4R129W did not convey protection. PAX4-expressing islets exhibited reduced insulitis and decreased beta cell apoptosis, correlating with diminished DNA damage and increased islet cell proliferation. Microarray profiling revealed that PAX4 but not PAX4R129W targeted expression of genes implicated in cell cycle and ER homeostasis. Consistent with the latter, islets overexpressing PAX4 were protected against thapsigargin-mediated ER-stress-related apoptosis. Luminal swelling associated with ER stress induced by thapsigargin was rescued in PAX4-overexpressing beta cells, correlating with preserved cytosolic calcium oscillations in response to glucose. In contrast, RNA interference mediated repression of PAX4-sensitised MIN6 cells to thapsigargin cell death. CONCLUSIONS/INTERPRETATION: The coordinated regulation of distinct cellular pathways particularly related to ER homeostasis by PAX4 not achieved by the mutant variant PAX4R129W alleviates beta cell degeneration and protects against diabetes mellitus. The raw data for the RNA microarray described herein are accessible in the Gene Expression Omnibus database under accession number GSE62846.


Asunto(s)
Diabetes Mellitus Tipo 1/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de Homeodominio/metabolismo , Células Secretoras de Insulina/metabolismo , Factores de Transcripción Paired Box/metabolismo , Animales , Apoptosis/fisiología , Proliferación Celular/fisiología , Diabetes Mellitus Tipo 1/patología , Femenino , Células Secretoras de Insulina/patología , Masculino , Ratones , Ratones Mutantes
5.
Curr Gene Ther ; 15(4): 436-46, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26122098

RESUMEN

Successful normalization of blood glucose in patients transplanted with pancreatic islets isolated from cadaveric donors established the proof-of-concept that Type 1 Diabetes Mellitus is a curable disease. Nonetheless, major caveats to the widespread use of this cell therapy approach have been the shortage of islets combined with the low viability and functional rates subsequent to transplantation. Gene therapy targeted to enhance survival and performance prior to transplantation could offer a feasible approach to circumvent these issues and sustain a durable functional ß-cell mass in vivo. However, efficient and safe delivery of nucleic acids to intact islet remains a challenging task. Here we describe a simple and easy-to-use lentiviral transduction protocol that allows the transduction of approximately 80 % of mouse and human islet cells while preserving islet architecture, metabolic function and glucose-dependent stimulation of insulin secretion. Our protocol will facilitate to fully determine the potential of gene expression modulation of therapeutically promising targets in entire pancreatic islets for xenotransplantation purposes.


Asunto(s)
Vectores Genéticos , Islotes Pancreáticos/fisiología , Lentivirus/genética , Transducción Genética/métodos , Animales , Células Cultivadas , Citometría de Flujo , Glucagón/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Insulina/metabolismo , Islotes Pancreáticos/citología , Masculino , Ratones Endogámicos C57BL
6.
Genes Cancer ; 2(8): 805-17, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22393465

RESUMEN

The c-Myb transcription factor is an important regulator of hematopoietic cell development. c-Myb is expressed in immature hematopoietic cells and plays a direct role in lineage fate selection, cell cycle progression, and differentiation of myeloid as well as B- and T-lymphoid progenitor cells. As a DNA-binding transcription factor, c-Myb regulates specific gene programs through activation of target genes. Still, our understanding of these programs is incomplete. Here, we report a set of novel c-Myb target genes, identified using a combined approach: specific c-Myb knockdown by 2 different siRNAs and subsequent global expression profiling, combined with the confirmation of direct binding of c-Myb to the target promoters by ChIP assays. The combination of these 2 approaches, as well as additional validation such as cloning and testing the promoters in reporter assays, confirmed that MYADM, LMO2, GATA2, STAT5A, and IKZF1 are target genes of c-Myb. Additional studies, using chromosome conformation capture, demonstrated that c-Myb target genes may directly interact with each other, indicating that these genes may be coordinately regulated. Of the 5 novel target genes identified, 3 are transcription factors, and one is a transcriptional co-regulator, supporting a role of c-Myb as a master regulator controlling the expression of other transcriptional regulators in the hematopoietic system.

7.
Nucleic Acids Res ; 38(15): 4970-84, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20385574

RESUMEN

Synergy between transcription factors operating together on complex promoters is a key aspect of gene activation. The ability of specific factors to synergize is restricted by sumoylation (synergy control, SC). Focusing on the haematopoietic transcription factor c-Myb, we found evidence for a strong SC linked to SUMO-conjugation in its negative regulatory domain (NRD), while AMV v-Myb has escaped this control. Mechanistic studies revealed a SUMO-dependent switch in the function of NRD. When NRD is sumoylated, the activity of c-Myb is reduced. When sumoylation is abolished, NRD switches into being activating, providing the factor with a second activation function (AF). Thus, c-Myb harbours two AFs, one that is constitutively active and one in the NRD being SUMO-regulated (SRAF). This double AF augments c-Myb synergy at compound natural promoters. A similar SUMO-dependent switch was observed in the regulatory domains of Sp3 and p53. We show that the change in synergy behaviour correlates with a SUMO-dependent differential recruitment of p300 and a corresponding local change in histone H3 and H4 acetylation. We therefore propose a general model for SUMO-mediated SC, where SUMO controls synergy by determining the number and strength of AFs associated with a promoter leading to differential chromatin signatures.


Asunto(s)
Proteína p300 Asociada a E1A/metabolismo , Proteínas Proto-Oncogénicas c-myb/metabolismo , Proteínas Represoras/metabolismo , Proteína SUMO-1/metabolismo , Transactivadores/metabolismo , Animales , Línea Celular , Cromatina/metabolismo , ADN/metabolismo , Regulación de la Expresión Génica , Humanos , Regiones Promotoras Genéticas , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas c-myb/química , Proteínas Represoras/química , Transactivadores/química
8.
Neoplasia ; 10(5): 418-28, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18472959

RESUMEN

Androgen deprivation induces the regression of prostate tumors mainly due to an increase in the apoptosis rate; however, the molecular mechanisms underlying the antiapoptotic actions of androgens are not completely understood. We have studied the antiapoptotic effects of androgens in prostate cancer cells exposed to different proapoptotic stimuli. Terminal deoxynucleotidyl transferase-mediated nick-end labeling and nuclear fragmentation analyses demonstrated that androgens protect LNCaP prostate cancer cells from apoptosis induced by thapsigargin, the phorbol ester 12-O-tetradecanoyl-13-phorbol-acetate, or UV irradiation. These three stimuli require the activation of the c-Jun N-terminal kinase (JNK) pathway to induce apoptosis and in all three cases, androgen treatment blocks JNK activation. Interestingly, okadaic acid, a phosphatase inhibitor that causes apoptosis in LNCaP cells, induces JNK activation that is also inhibited by androgens. Actinomycin D, the antiandrogen bicalutamide or specific androgen receptor (AR) knockdown by small interfering RNA all blocked the inhibition of JNK activation mediated by androgens indicating that this activity requires AR-dependent transcriptional activation. These data suggest that the crosstalk between AR and JNK pathways may have important implications in prostate cancer progression and may provide targets for the development of new therapies.


Asunto(s)
Andrógenos/farmacología , Apoptosis/efectos de los fármacos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Neoplasias de la Próstata/patología , Antagonistas de Andrógenos/farmacología , Antagonistas de Receptores Androgénicos , Anilidas/farmacología , Apoptosis/efectos de la radiación , Regulación hacia Abajo , Activación Enzimática/efectos de los fármacos , Humanos , Etiquetado Corte-Fin in Situ , Masculino , Microscopía Fluorescente , Neoplasias Hormono-Dependientes/enzimología , Neoplasias Hormono-Dependientes/patología , Nitrilos/farmacología , Neoplasias de la Próstata/enzimología , ARN Interferente Pequeño/farmacología , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Acetato de Tetradecanoilforbol/farmacología , Tapsigargina/farmacología , Compuestos de Tosilo/farmacología , Células Tumorales Cultivadas , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...