Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(5): e0292152, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38753846

RESUMEN

In the protozoan parasite Leishmania, most genes encoding for ribosomal proteins (RPs) are present as two or more copies in the genome. However, their untranslated regions (UTRs) are predominantly divergent and might be associated with a distinct regulation of the expression of paralogous genes. Herein, we investigated the expression profiles of two RPs (S16 and L13a) encoded by duplicated genes in Leishmania major. The genes encoding for the S16 protein possess identical coding sequences (CDSs) and divergent UTRs, whereas the CDSs of L13a diverge by two amino acids and by their UTRs. Using CRISPR/Cas9 genome editing, we generated knockout (Δ) and endogenously tagged transfectants for each paralog of L13a and S16 genes. Combining tagged and Δ cell lines we found evidence of differential expression of both RPS16 and RPL13a isoforms throughout parasite development, with one isoform consistently more abundant than its respective copy. In addition, compensatory expression was observed for each paralog upon deletion of the corresponding isoform, suggesting functional conservation between these proteins. This differential expression pattern relates to post-translational processes, given compensation occurs at the level of the protein, with no alterations detected at transcript level. Ribosomal profiles for RPL13a indicate a standard behavior for these paralogues suggestive of interaction with heavy RNA-protein complexes, as already reported for other RPs in trypanosomatids. We identified paralog-specific bound to their 3'UTRs which may be influential in regulating paralog expression. In support, we identified conserved cis-elements within the 3'UTRs of RPS16 and RPL13a; cis-elements exclusive to the UTR of the more abundant paralog or to the less abundant ones were identified.


Asunto(s)
Leishmania major , Proteínas Protozoarias , Proteínas Ribosómicas , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Leishmania major/genética , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Sistemas CRISPR-Cas , Regulación de la Expresión Génica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
2.
Acta Trop ; 244: 106959, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37257676

RESUMEN

Arginine methylation is catalysed by Protein Arginine Methyltransferases (PRMTs) and can affect how a target protein functions and how it interacts with other macromolecules, which in turn impacts on cell metabolism and gene expression control. Leishmania parasites express five different PRMTs, and although the presence of each individual PRMT is not essential per se, the imbalanced activity of these PRMTs can impact the virulence of Leishmania parasites in vitro and in vivo. Here we created a Leishmania major cell line overexpressing PRMT6 and show that similar to what was observed for the T. brucei homologous enzyme, L. major PRMT6 probably has a narrow substrate range. However, its overexpression notably impairs the infection in mice, with a mild reduction in the number of viable parasites in the lymph nodes. Our results indicate that arginine methylation by LmjPRMT6 plays a significant role in the adaptation of the parasite to the environment found in the mammalian host.


Asunto(s)
Leishmania major , Parásitos , Ratones , Animales , Proteína-Arginina N-Metiltransferasas/química , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Parásitos/metabolismo , Metilación , Arginina/metabolismo , Mamíferos
3.
ACS Infect Dis ; 8(3): 516-532, 2022 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-35226477

RESUMEN

In trypanosomatids, regulation of gene expression occurs mainly at the posttranscriptional level, and RNA-binding proteins (RBPs) are key players in determining the fates of transcripts. RBPs are targets of protein arginine methyltransferases (PRMTs), which posttranslationally regulate the RNA-binding capacity and other RBP interactions by transferring methyl groups to arginine residues (R-methylation). Herein, we functionally characterized the five predicted PRMTs in Leishmania braziliensis by gene knockout and endogenous protein HA tagging using CRISPR/Cas9 gene editing. We report that R-methylation profiles vary among Leishmania species and across L. braziliensis lifecycle stages, with the peak PRMT expression occurring in promastigotes. A list of PRMT-interacting proteins was obtained in a single coimmunoprecipitation assay using HA-tagged PRMTs, suggesting a network of putative targets of PRMTs and cooperation between the R-methylation writers. Knockout of each L. braziliensis PRMT led to significant changes in global arginine methylation patterns without affecting cell viability. Deletion of either PRMT1 or PRMT3 disrupted most type I PRMT activity, resulting in a global increase in monomethyl arginine levels. Finally, we demonstrate that L. braziliensis PRMT1 and PRMT5 are required for efficient macrophage infection in vitro, and for axenic amastigote proliferation. The results indicate that R-methylation is modulated across lifecycle stages in L. braziliensis and show possible functional overlap and cooperation among the different PRMTs in targeting proteins. Overall, our data suggest important regulatory roles of these proteins throughout the L. braziliensis life cycle, showing that arginine methylation is important for parasite-host cell interactions.


Asunto(s)
Leishmania braziliensis , Proteína-Arginina N-Metiltransferasas , Arginina/metabolismo , Leishmania braziliensis/genética , Macrófagos/metabolismo , Metilación , Proteína-Arginina N-Metiltransferasas/química , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo
4.
Front Cell Infect Microbiol ; 11: 772311, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34858879

RESUMEN

Until 2015, loss-of-function studies to elucidate protein function in Leishmania relied on gene disruption through homologous recombination. Then, the CRISPR/Cas9 revolution reached these protozoan parasites allowing efficient genome editing with one round of transfection. In addition, the development of LeishGEdit, a PCR-based toolkit for generating knockouts and tagged lines using CRISPR/Cas9, allowed a more straightforward and effective genome editing. In this system, the plasmid pTB007 is delivered to Leishmania for episomal expression or integration in the ß-tubulin locus and for the stable expression of T7 RNA polymerase and Cas9. In South America, and especially in Brazil, Leishmania (Viannia) braziliensis is the most frequent etiological agent of tegumentary leishmaniasis. The L. braziliensis ß-tubulin locus presents significant sequence divergence in comparison with Leishmania major, which precludes the efficient integration of pTB007 and the stable expression of Cas9. To overcome this limitation, the L. major ß-tubulin sequences, present in the pTB007, were replaced by a Leishmania (Viannia) ß-tubulin conserved sequence generating the pTB007_Viannia plasmid. This modification allowed the successful integration of the pTB007_Viannia cassette in the L. braziliensis M2903 genome, and in silico predictions suggest that this can also be achieved in other Viannia species. The activity of Cas9 was evaluated by knocking out the flagellar protein PF16, which caused a phenotype of immobility in these transfectants. Endogenous PF16 was also successfully tagged with mNeonGreen, and an in-locus complementation strategy was employed to return a C-terminally tagged copy of the PF16 gene to the original locus, which resulted in the recovery of swimming capacity. The modified plasmid pTB007_Viannia allowed the integration and stable expression of both T7 RNA polymerase and Cas9 in L. braziliensis and provided an important tool for the study of the biology of this parasite.


Asunto(s)
Leishmania braziliensis , Leishmania major , Sistemas CRISPR-Cas , ARN Polimerasas Dirigidas por ADN , Edición Génica , Leishmania braziliensis/genética , Proteínas Virales
5.
PLoS Negl Trop Dis ; 15(3): e0009230, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33651805

RESUMEN

Leishmania major is the main causative agent of cutaneous leishmaniasis in the Old World. In Leishmania parasites, the lack of transcriptional control is mostly compensated by post-transcriptional mechanisms. Methylation of arginine is a conserved post-translational modification executed by Protein Arginine Methyltransferase (PRMTs). The genome from L. major encodes five PRMT homologs, including the cytosolic protein associated with several RNA-binding proteins, LmjPRMT7. It has been previously reported that LmjPRMT7 could impact parasite infectivity. In addition, a more recent work has clearly shown the importance of LmjPRMT7 in RNA-binding capacity and protein stability of methylation targets, demonstrating the role of this enzyme as an important epigenetic regulator of mRNA metabolism. In this study, we unveil the impact of PRMT7-mediated methylation on parasite development and virulence. Our data reveals that higher levels of LmjPRMT7 can impair parasite pathogenicity, and that deletion of this enzyme rescues the pathogenic phenotype of an attenuated strain of L. major. Interestingly, lesion formation caused by LmjPRMT7 knockout parasites is associated with an exacerbated inflammatory reaction in the tissue correlated with an excessive neutrophil recruitment. Moreover, the absence of LmjPRMT7 also impairs parasite development within the sand fly vector Phlebotomus duboscqi. Finally, a transcriptome analysis shed light onto possible genes affected by depletion of this enzyme. Taken together, this study highlights how post-transcriptional regulation can affect different aspects of the parasite biology.


Asunto(s)
Leishmania major/enzimología , Leishmaniasis Cutánea/patología , Neutrófilos/fisiología , Proteína Metiltransferasas/metabolismo , Proteínas Protozoarias/metabolismo , Animales , Eliminación de Gen , Regulación Enzimológica de la Expresión Génica , Leishmania major/genética , Leishmania major/metabolismo , Leishmaniasis Cutánea/parasitología , Ratones , Proteína Metiltransferasas/genética
7.
Nat Commun ; 10(1): 5273, 2019 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-31754185

RESUMEN

Leishmania RNA virus (LRV) is an important virulence factor associated with the development of mucocutaneous Leishmaniasis, a severe form of the disease. LRV-mediated disease exacerbation relies on TLR3 activation, but downstream mechanisms remain largely unexplored. Here, we combine human and mouse data to demonstrate that LRV triggers TLR3 and TRIF to induce type I IFN production, which induces autophagy. This process results in ATG5-mediated degradation of NLRP3 and ASC, thereby limiting NLRP3 inflammasome activation in macrophages. Consistent with the known restricting role of NLRP3 for Leishmania replication, the signaling pathway triggered by LRV results in increased parasite survival and disease progression. In support of this data, we find that lesions in patients infected with LRV+ Leishmania are associated with reduced inflammasome activation and the development of mucocutaneous disease. Our findings reveal the mechanisms triggered by LRV that contribute to the development of the debilitating mucocutaneous form of Leishmaniasis.


Asunto(s)
Inmunidad Innata/inmunología , Inflamasomas/inmunología , Leishmania/inmunología , Leishmaniasis Mucocutánea/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Virus ARN/inmunología , Receptor Toll-Like 3/inmunología , Animales , Autofagia/inmunología , Humanos , Interleucina-1beta/inmunología , Interleucina-1beta/metabolismo , Leishmania/fisiología , Leishmania/virología , Leishmaniasis Mucocutánea/parasitología , Leishmaniasis Mucocutánea/virología , Macrófagos/inmunología , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Virus ARN/fisiología , Transducción de Señal/inmunología , Receptor Toll-Like 3/metabolismo
8.
Parasitology ; 143(12): 1665-71, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27573677

RESUMEN

Effective control of gastrointestinal parasites is necessary in sheep production. The development of anthelmintics resistance is causing the available chemically based anthelmintics to become less effective. Biological control strategies present an alternative to this problem. In the current study, we tested the larvicidal effects of Bacillus thuringiensis var. israelensis Cry11Aa toxin against Haemonchus contortus larvae. Bacterial suspensions [2 × 108 colony-forming units (CFU) g-1 of the feces] of B. thuringiensis var. israelensis and recombinant Escherichia coli expressing Cry11Aa toxin were added to naturally H. contortus egg-contaminated feces. The larvae were quantified, and significant reductions of 62 and 81% (P < 0·001) were, respectively observed, compared with the control group. A 30 mL bacterial suspension (1 × 108 CFU mL-1) of B. thuringiensis var. israelensis and recombinant E. coli expressing Cry11Aa toxin were then orally administered to lambs naturally infected with H. contortus. Twelve hours after administration, feces were collected and submitted to coprocultures. Significant larvae reductions (P < 0·001) of 79 and 90% were observed respectively compared with the control group. The results suggest that the Cry11Aa toxin of B. thuringiensis var. israelensis is a promising new class of biological anthelmintics for treating sheep against H. contortus.


Asunto(s)
Proteínas Bacterianas/toxicidad , Endotoxinas/toxicidad , Haemonchus/efectos de los fármacos , Proteínas Hemolisinas/toxicidad , Insecticidas/toxicidad , Animales , Toxinas de Bacillus thuringiensis , Proteínas Bacterianas/genética , Bioensayo , Terapia Biológica/métodos , Modelos Animales de Enfermedad , Endotoxinas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Hemoncosis/parasitología , Hemoncosis/terapia , Haemonchus/fisiología , Proteínas Hemolisinas/genética , Larva/efectos de los fármacos , Larva/fisiología , Proteínas Recombinantes/genética , Proteínas Recombinantes/toxicidad , Ovinos , Análisis de Supervivencia , Factores de Tiempo , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...