Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Microbiol Spectr ; 11(6): e0197523, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37791952

RESUMEN

IMPORTANCE: Common scab is a disease caused by a few Streptomyces species that affects important root and tuber crops including potato, beet, radish, and parsnip, resulting in major economic losses worldwide. In this work, we unveiled the molecular basis of host recognition by these pathogens by solving the structure of the sugar-binding protein CebE of Streptomyces scabiei in complex with cellotriose, the main elicitor of the pathogenic lifestyle of these bacteria. We further revealed that the signaling pathway from CebE-mediated transport of cellotriose is conserved in all pathogenic species except Streptomyces ipomoeae, which causes soft rot disease in sweet potatoes. Our work also provides the structural basis of the uptake of cellobiose and cellotriose in saprophytic Streptomyces species, the first step activating the expression of the enzymatic system degrading the most abundant polysaccharide on earth, cellulose.


Asunto(s)
Celobiosa , Streptomyces , Celobiosa/metabolismo , Transporte Biológico , Streptomyces/genética , Streptomyces/metabolismo , Enfermedades de las Plantas/microbiología
2.
Biology (Basel) ; 12(2)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36829511

RESUMEN

Plant colonization by Streptomyces scabiei, the main cause of common scab disease on root and tuber crops, is triggered by cello-oligosaccharides, cellotriose being the most efficient elicitor. The import of cello-oligosaccharides via the ATP-binding cassette (ABC) transporter CebEFG-MsiK induces the production of thaxtomin phytotoxins, the central virulence determinants of this species, as well as many other metabolites that compose the 'virulome' of S. scabiei. Homology searches revealed paralogues of the CebEFG proteins, encoded by the cebEFG2 cluster, while another ABC-type transporter, PitEFG, is encoded on the pathogenicity island (PAI). We investigated the gene expression of these candidate alternative elicitor importers in S. scabiei 87-22 upon cello-oligosaccharide supply by transcriptomic analysis, which revealed that cebEFG2 expression is highly activated by both cellobiose and cellotriose, while pitEFG expression was barely induced. Accordingly, deletion of pitE had no impact on virulence and thaxtomin production under the conditions tested, while the deletion of cebEFG2 reduced virulence and thaxtomin production, though not as strong as the mutants of the main cello-oligosaccharide transporter cebEFG1. Our results thus suggest that both ceb clusters participate, at different levels, in importing the virulence elicitors, while PitEFG plays no role in this process under the conditions tested. Interestingly, under more complex culture conditions, the addition of cellobiose restored thaxtomin production when both ceb clusters were disabled, suggesting the existence of an additional mechanism that is involved in sensing or importing the elicitor of the onset of the pathogenic lifestyle of S. scabiei.

3.
Chembiochem ; 20(8): 1068-1077, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30604585

RESUMEN

Cytochrome P450 enzymes generally functionalize inert C-H bonds, and thus, they are important biocatalysts for chemical synthesis. However, enzymes that catalyze both aliphatic and aromatic hydroxylation in the same biotransformation process have rarely been reported. A recent biochemical study demonstrated the P450 TxtC for the biosynthesis of herbicidal thaxtomins as the first example of this unique type of enzyme. Herein, the detailed characterization of substrate requirements and biocatalytic applications of TxtC are reported. The results reveal the importance of N-methylation of the thaxtomin diketopiperazine (DKP) core on enzyme reactions and demonstrate the tolerance of the enzyme to modifications on the indole and phenyl moieties of its substrates. Furthermore, hydroxylated, methylated, aromatic DKPs are synthesized through a biocatalytic route comprising TxtC and the promiscuous N-methyltransferase Amir_4628; thus providing a basis for the broad application of this unique P450.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Dicetopiperazinas/metabolismo , Biocatálisis , Dicetopiperazinas/química , Hidroxilación , Metilación , Especificidad por Sustrato
4.
Nat Prod Res ; 33(20): 2951-2957, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30304960

RESUMEN

Two Streptomyces spp. strains responsible for potato common scab infections in Uruguay which do not produce diketopiperazines were identified through whole-genome sequencing, and the virulence factor produced by one of them was isolated and characterized. Phylogenetic analysis showed that both pathogenic strains can be identified as S. niveiscabiei, and the structure of the phytotoxin was elucidated as that of the polyketide desmethylmensacarcin using MS and NMR methods. The metabolite is produced in yields of ∼200 mg/L of culture media, induces deep necrotic lesions on potato tubers, stuns root and shoot growth in radish seedlings, and is comparatively more aggressive than thaxtomin A. This is the first time that desmethylmensacarcin, a member of a class of compounds known for their antitumor and antibiotic activity, is associated with phytotoxicity. More importantly, it represents the discovery of a new virulence factor related to potato common scab, an economically-important disease affecting potato production worldwide.


Asunto(s)
Enfermedades de las Plantas/microbiología , Solanum tuberosum/microbiología , Streptomyces/química , Dicetopiperazinas , Indoles/toxicidad , Estructura Molecular , Filogenia , Piperazinas/toxicidad , Enfermedades de las Plantas/etiología , Raphanus/microbiología , Streptomyces/patogenicidad , Factores de Virulencia/química , Factores de Virulencia/aislamiento & purificación
5.
Appl Environ Microbiol ; 84(11)2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29602787

RESUMEN

Thaxtomins are virulence factors of most plant-pathogenic Streptomyces strains. Due to their potent herbicidal activity, attractive environmental compatibility, and inherent biodegradability, thaxtomins are key active ingredients of bioherbicides approved by the U.S. Environmental Protection Agency. However, the low yield of thaxtomins in native Streptomyces producers limits their wide agricultural applications. Here, we describe the high-yield production of thaxtomins in a heterologous host. The thaxtomin gene cluster from S. scabiei 87.22 was cloned and expressed in S. albus J1074 after chromosomal integration. The production of thaxtomins and nitrotryptophan analogs was observed using liquid chromatography-mass spectrometry (LC-MS) analysis. When the engineered S. albus J1074 was cultured in the minimal medium Thx defined medium supplemented with 1% cellobiose (TDMc), the yield of the most abundant and herbicidal analog, thaxtomin A, was 10 times higher than that in S. scabiei 87.22, and optimization of the medium resulted in the highest yield of thaxtomin analogs at about 222 mg/liter. Further engineering of the thaxtomin biosynthetic gene cluster through gene deletion led to the production of multiple biosynthetic intermediates important to the chemical synthesis of new analogs. Additionally, the versatility of the thaxtomin biosynthetic system in S. albus J1074 was capitalized on to produce one unnatural fluorinated analog, 5-fluoro-thaxtomin A (5-F-thaxtomin A), whose structure was elucidated by a combination of MS and one-dimensional (1D) and 2D nuclear magnetic resonance (NMR) analyses. Natural and unnatural thaxtomins demonstrated potent herbicidal activity in radish seedling assays. These results indicated that S. albus J1074 has the potential to produce thaxtomins and analogs thereof with high yield, fostering their agricultural applications.IMPORTANCE Thaxtomins are agriculturally valuable herbicidal natural products, but the productivity of native producers is limiting. Heterologous expression of the thaxtomin gene cluster in S. albus J1074 resulted in the highest yield of thaxtomins ever reported, representing a significant leap forward in its wide agricultural use. Furthermore, current synthetic routes to thaxtomins and analogs are lengthy, and two thaxtomin biosynthetic intermediates produced at high yields in this work can provide precursors and building blocks to advanced synthetic routes. Importantly, the production of 5-F-thaxtomin A in engineered S. albus J1074 demonstrated a viable alternative to chemical methods in the synthesis of new thaxtomin analogs. Moreover, our work presents an attractive synthetic biology strategy to improve the supply of herbicidal thaxtomins, likely finding general applications in the discovery and production of many other bioactive natural products.


Asunto(s)
Herbicidas/metabolismo , Indoles/metabolismo , Familia de Multigenes , Piperazinas/metabolismo , Streptomyces/metabolismo , Biología Sintética/métodos , Regulación Bacteriana de la Expresión Génica , Streptomyces/genética , Factores de Virulencia/metabolismo
6.
Mol Plant Pathol ; 19(7): 1733-1741, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29316196

RESUMEN

With few exceptions, thaxtomin A (ThxA), a nitrated diketopiperazine, is the pathogenicity determinant for plant-pathogenic Streptomyces species. In Streptomyces scabiei (syn. S. scabies), the ThxA biosynthetic cluster is located within a 177-kb mobile pathogenicity island (PAI), called the toxicogenic region (TR). In S. turgidiscabies, the ThxA biosynthetic cluster is located within a 674-kb pathogenicity island (PAIst). The emergence of new plant pathogens occurs in this genus, but not frequently. This raises the question of whether the mobilization of these pathogenicity regions, through mating, is widespread and whether TR and PAIst can confer plant pathogenicity. We showed that ThxA biosynthetic clusters on TR and PAIst were transferred into strains from five non-pathogenic Streptomyces species through mating with S. scabiei and S. turgidiscabies. However, not all of the transconjugants produced ThxA and exhibited the virulence phenotype, indicating that the genetic background of the recipient strains affects the functionality of the ThxA biosynthetic cluster and therefore would be expected to affect the emergence of novel pathogenic Streptomyces species. Thxs have been patented as natural herbicides, but have yet to be commercialized. Our results also demonstrated the potential of the heterologous production of ThxA as a natural and biodegradable herbicide in non-pathogenic Streptomyces species.


Asunto(s)
Islas Genómicas/genética , Streptomyces/genética , Streptomyces/patogenicidad , Indoles/metabolismo , Piperazinas/metabolismo , Enfermedades de las Plantas/microbiología , Streptomyces/metabolismo , Virulencia
7.
Mol Plant Pathol ; 19(6): 1480-1490, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29077242

RESUMEN

Common scab disease on root and tuber plants is caused by Streptomyces scabies and related species which use the cellulose synthase inhibitor thaxtomin A as the main phytotoxin. Thaxtomin production is primarily triggered by the import of cello-oligosaccharides. Once inside the cell, the fate of the cello-oligosaccharides is dichotomized: (i) the fuelling of glycolysis with glucose for the saprophytic lifestyle through the action of ß-glucosidase(s) (BGs); and (ii) elicitation of the pathogenic lifestyle by the inhibition of CebR-mediated transcriptional repression of thaxtomin biosynthetic genes. Here, we investigated the role of scab57721, encoding a putative BG (BglC), in the onset of the pathogenicity of S. scabies. Enzymatic assays showed that BglC was able to release glucose from cellobiose, cellotriose and all other cello-oligosaccharides tested. Its inactivation resulted in a phenotype opposite to that expected, as reduced production of thaxtomin was monitored when the mutant was cultivated on medium containing cello-oligosaccharides as unique carbon source. This unexpected phenotype could be attributed to the highly increased activity of alternative intracellular BGs, probably as a compensation for bglC inactivation, which then prevented cellobiose and cellotriose accumulation to reduce the activity of CebR. In contrast, when the bglC null mutant was cultivated on medium devoid of cello-oligosaccharides, it instead constitutively produced thaxtomin. This observed hypervirulent phenotype does not fit with the proposed model of the cello-oligosaccharide-mediated induction of thaxtomin production, and suggests that the role of BglC in the route to the pathogenic lifestyle of S. scabies is more complex than currently presented.


Asunto(s)
Streptomyces/patogenicidad , beta-Glucosidasa/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/genética , beta-Glucosidasa/genética
8.
Sci Rep ; 7(1): 842, 2017 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-28405004

RESUMEN

Nitroaromatics are among the most important and commonly used chemicals but their production often suffers from multiple unsolved challenges. We have previously described the development of biocatalytic nitration processes driven by an engineered P450 TxtE fusion construct. Herein we report the creation of improved nitration biocatalysts through constructing and characterizing fusion proteins of TxtE with the reductase domain of CYP102A1 (P450BM3, BM3R). The majority of constructs contained variable linker length while one was rationally designed for optimizing protein-protein interactions. Detailed biochemical characterization identified multiple active chimeras that showed improved nitration activity, increased coupling efficiency and higher total turnover numbers compared with TxtE. Substrate promiscuity of the most active chimera was further assessed with a substrate library. Finally, a biocatalytic nitration process was developed to nitrate 4-Me-DL-Trp. The production of both 4-Me-5-NO2-L-Trp and 4-Me-7-NO2-L-Trp uncovered remarkable regio-promiscuity of nitration biocatalysts.

9.
mSphere ; 2(2)2017.
Artículo en Inglés | MEDLINE | ID: mdl-28261670

RESUMEN

The acquisition of genetic material conferring the arsenal necessary for host virulence is a prerequisite on the path to becoming a plant pathogen. More subtle mutations are also required for the perception of cues signifying the presence of the target host and optimal conditions for colonization. The decision to activate the pathogenic lifestyle is not "taken lightly" and involves efficient systems monitoring environmental conditions. But how can a pathogen trigger the expression of virulence genes in a timely manner if the main signal inducing its pathogenic behavior originates from cellulose, the most abundant polysaccharide on earth? This situation is encountered by Streptomyces scabies, which is responsible for common scab disease on tuber and root crops. We propose here a series of hypotheses of how S. scabies could optimally distinguish whether cello-oligosaccharides originate from decomposing lignocellulose (nutrient sources, saprophyte) or, instead, emanate from living and expanding plant tissue (virulence signals, pathogen) and accordingly adapt its physiological response.

10.
Mol Plant Microbe Interact ; 30(1): 72-82, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27977935

RESUMEN

The main pathogenicity factor of Streptomyces species associated with the potato common scab disease is a nitrated diketopiperazine called thaxtomin A (ThxA). In Streptomyces scabiei (syn. S. scabies), which is thought to be the most ancient pathogenic Streptomyces species, the ThxA biosynthetic cluster is located within a mobile genomic island called the toxicogenic region (TR). Three attachment (att) sites further separate TR into two subregions (TR1 and TR2). TR1 contains the ThxA biosynthetic cluster and is conserved among several pathogenic Streptomyces species. However, TR2, an integrative and conjugative element, is missing in most pathogenic species. In our previous study, we demonstrated the mobilization of the whole TR element or TR2 alone between S. scabiei and nonpathogenic Streptomyces species. TR1 alone did not mobilize in these experiments. These data suggest that TR2 is required for the mobilization of TR1. Here, we show that TR2 can self mobilize to pathogenic Streptomyces species harboring only TR1 and integrate into the att site of TR1, leading to the tandem accretion of resident TR1 and incoming TR2. The incoming TR2 can further mobilize resident TR1 in cis and transfer to a new recipient cell. Our study demonstrated that TR1 is a nonautonomous cis-mobilizable element and that it can hijack TR2 recombination and conjugation machinery to excise, transfer, and integrate, leading to the dissemination of pathogenicity genes and emergence of novel pathogenic species. Additionally, comparative genomic analysis of 23 pathogenic Streptomyces isolates from ten species revealed that the composite pathogenicity island (PAI) formed by TR1 and TR2 is dynamic and various compositions of the island exist within the population of newly emerged pathogenic species, indicating the structural instability of this composite PAI.


Asunto(s)
Islas Genómicas/genética , Streptomyces/genética , Streptomyces/patogenicidad , Secuencia de Bases , Vías Biosintéticas/genética , Cromosomas Bacterianos/genética , Evolución Molecular , Transferencia de Gen Horizontal/genética , Genoma Bacteriano , Indoles/metabolismo , Modelos Biológicos , Filogenia , Piperazinas/metabolismo , Especificidad de la Especie , Streptomyces/aislamiento & purificación
11.
Mol Plant Microbe Interact ; 29(8): 640-50, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27502745

RESUMEN

Approximately 10 Streptomyces species cause disease on underground plant structures. The most economically important of these is potato scab, and the most studied of these pathogens is Streptomyces scabiei (syn. S. scabies). The main pathogenicity determinant of scab-causing Streptomyces species is a nitrated diketopiperazine, known as thaxtomin A (ThxA). In the pathogenic species Streptomyces turgidiscabies, ThxA biosynthetic genes reside on a mobile pathogenicity island (PAI). However, the mobilization of PAIs in other Streptomyces species remains uncharacterized. Here, we investigated the mobilization of the PAI of S. scabiei 87-22. Based on whole genome sequences, we inferred the evolutionary relationships of pathogenic Streptomyces species and discovered that Streptomyces sp. strain 96-12, a novel pathogenic species isolated from potatoes in Egypt, was phylogenetically grouped with nonpathogenic species rather than with known pathogenic species. We also found that Streptomyces sp. strain 96-12 contains a PAI that is almost identical to the PAI in S. scabiei 87-22, despite significant differences in their genome sequences. This suggested direct or indirect in vivo mobilization of the PAI between S. scabiei and nonpathogenic Streptomyces species. To test whether the S. scabiei 87-22 PAI could, indeed, be mobilized, S. scabiei 87-22 deletion mutants containing antibiotic resistance markers in the PAI were mated with Streptomyces diastatochromogenes, a nonpathogenic species. The PAI of S. scabiei was site-specifically inserted into the aviX1 gene of S. diastatochromogenes and conferred pathogenicity in radish seedling assays. Our results demonstrated that S. scabiei, the earliest described Streptomyces pathogen, could be the source of a PAI responsible for the emergence of novel pathogenic species.


Asunto(s)
Islas Genómicas/genética , Indoles/metabolismo , Piperazinas/metabolismo , Enfermedades de las Plantas/microbiología , Solanum tuberosum/microbiología , Streptomyces/patogenicidad , Evolución Biológica , Filogenia , Streptomyces/genética , Virulencia
12.
Sci Rep ; 6: 27144, 2016 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-27250236

RESUMEN

Streptomyces scabies is an economically important plant pathogen well-known for damaging root and tuber crops by causing scab lesions. Thaxtomin A is the main causative agent responsible for the pathogenicity of S. scabies and cello-oligosaccharides are environmental triggers that induce the production of this phytotoxin. How cello-oligosaccharides are sensed or transported in order to induce the virulent behavior of S. scabies? Here we report that the cellobiose and cellotriose binding protein CebE, and MsiK, the ATPase providing energy for carbohydrates transport, are the protagonists of the cello-oligosaccharide mediated induction of thaxtomin production in S. scabies. Our work provides the first example where the transport and not the sensing of major constituents of the plant host is the central mechanism associated with virulence of the pathogen. Our results allow to draw a complete pathway from signal transport to phytotoxin production where each step of the cascade is controlled by CebR, the cellulose utilization regulator. We propose the high affinity of CebE to cellotriose as possible adaptation of S. scabies to colonize expanding plant tissue. Our work further highlights how genes associated with primary metabolism in nonpathogenic Streptomyces species have been recruited as basic elements of virulence in plant pathogenic species.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Bacterianas/metabolismo , Oligosacáridos/metabolismo , Streptomyces/patogenicidad , Adenosina Trifosfatasas/metabolismo , Celobiosa/metabolismo , Regulación Bacteriana de la Expresión Génica , Indoles/metabolismo , Filogenia , Piperazinas/metabolismo , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Transporte de Proteínas , Transducción de Señal , Streptomyces/metabolismo
13.
Syst Appl Microbiol ; 39(4): 252-259, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27130313

RESUMEN

The genera Dickeya and Pectobacterium contain important plant pathogens. However, species from these genera are often poorly defined and some new isolates could not be assigned to any of the existing species. Due to their wide geographic distribution and lethality, a reliable and easy classification scheme for these pathogens is urgently needed. The low cost of next-generation sequencing has generated an upsurge of microbial genome sequences. Here, we present a phylogenomic and systematic analysis of the genera Dickeya and Pectobacterium. Eighty-three genomes from these two genera as well as two Brenneria genomes were included in this study. We estimated average nucleotide identity (ANI) and in silico DNA-DNA hybridization (isDDH) values in combination with the whole-genome-based phylogeny from 895 single-copy orthologous genes using these 85 genomes. Strains with ANI values of ≥96% and isDDH values of ≥70% were consistently grouped together in the phylogenetic tree. ANI, isDDH, and whole-genome-based phylogeny all support the elevation of Pectobacterium carotovorum's four subspecies (actinidiae, odoriferum, carotovorum, and brasiliense) to the species level. We also found some strains could not be assigned to any of the existing species, indicating these strains represent novel species. Furthermore, our study revealed at least ten tested genomes from these genera were misnamed in GenBank. This work highlights the potential of using whole genome sequences to re-evaluate current prokaryotic species definition and establish a unified prokaryotic species definition frame for taxonomically challenging genera.


Asunto(s)
Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Genoma Bacteriano/genética , Pectobacterium/clasificación , Pectobacterium/genética , Secuencia de Bases , Secuenciación de Nucleótidos de Alto Rendimiento , Hibridación de Ácido Nucleico , Filogenia , Alineación de Secuencia , Análisis de Secuencia de ADN
14.
Appl Environ Microbiol ; 82(7): 2146-2155, 2016 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-26826232

RESUMEN

Streptomyces spp. are highly differentiated actinomycetes with large, linear chromosomes that encode an arsenal of biologically active molecules and catabolic enzymes. Members of this genus are well equipped for life in nutrient-limited environments and are common soil saprophytes. Out of the hundreds of species in the genus Streptomyces, a small group has evolved the ability to infect plants. The recent availability of Streptomyces genome sequences, including four genomes of pathogenic species, provided an opportunity to characterize the gene content specific to these pathogens and to study phylogenetic relationships among them. Genome sequencing, comparative genomics, and phylogenetic analysis enabled us to discriminate pathogenic from saprophytic Streptomyces strains; moreover, we calculated that the pathogen-specific genome contains 4,662 orthologs. Phylogenetic reconstruction suggested that Streptomyces scabies and S. ipomoeae share an ancestor but that their biosynthetic clusters encoding the required virulence factor thaxtomin have diverged. In contrast, S. turgidiscabies and S. acidiscabies, two relatively unrelated pathogens, possess highly similar thaxtomin biosynthesis clusters, which suggests that the acquisition of these genes was through lateral gene transfer.


Asunto(s)
Evolución Molecular , Genoma Bacteriano , Filogenia , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Streptomyces/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Plantas/microbiología , Streptomyces/clasificación , Streptomyces/metabolismo
15.
Biotechnol J ; 11(5): 624-32, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26743860

RESUMEN

Aromatic nitration is an immensely important industrial process to produce chemicals for a variety of applications, but it often suffers from multiple unsolved challenges. Enzymes as biocatalysts have been increasingly used for organic chemistry synthesis due to their high selectivity and environmental friendliness, but nitration has benefited minimally from the development of biocatalysis. In this work, we aimed to develop TxtE as practical biocatalysts for aromatic nitration. TxtE is a unique class I cytochrome P450 enzyme that nitrates the indole of l-tryptophan. To develop cost-efficient nitration processes, we fused TxtE with the reductase domains of CYP102A1 (P450BM3) and of P450RhF to create class III self-sufficient biocatalysts. The best engineered fusion protein was comparable with wild type TxtE in terms of nitration performance and other key biochemical properties. To demonstrate the application potential of the fusion enzyme, we nitrated 4-F-dl-tryptophan and 5-F-l-tryptophan in large scale enzymatic reactions. Tandem MS/MS and NMR analyses of isolated products revealed altered nitration sites. To our knowledge, these studies represent the first practice in developing biological nitration approaches and lay a solid basis to the use of TxtE-based biocatalysts for the production of valuable nitroaromatics.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Flúor/química , Nitratos/química , Triptófano/química , Triptófano/aislamiento & purificación , Sitios de Unión , Biocatálisis , Sistema Enzimático del Citocromo P-450/química , Indoles/química , Dominios Proteicos , Ingeniería de Proteínas/métodos , Proteínas Recombinantes de Fusión/metabolismo , Espectrometría de Masas en Tándem , Triptófano/análogos & derivados
16.
mBio ; 6(2): e02018, 2015 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-25714708

RESUMEN

UNLABELLED: A relatively small number of species in the large genus Streptomyces are pathogenic; the best characterized of these is Streptomyces scabies. The pathogenicity of S. scabies strains is dependent on the production of the nitrated diketopiperazine thaxtomin A, which is a potent plant cellulose synthesis inhibitor. Much is known about the genetic loci associated with plant virulence; however, the molecular mechanisms by which S. scabies triggers expression of thaxtomin biosynthetic genes, beyond the pathway-specific activator TxtR, are not well understood. In this study, we demonstrate that binding sites for the cellulose utilization repressor CebR occur and function within the thaxtomin biosynthetic cluster. This was an unexpected result, as CebR is devoted to primary metabolism and nutritive functions in nonpathogenic streptomycetes. In S. scabies, cellobiose and cellotriose inhibit the DNA-binding ability of CebR, leading to an increased expression of the thaxtomin biosynthetic and regulatory genes txtA, txtB, and txtR. Deletion of cebR results in constitutive thaxtomin A production and hypervirulence of S. scabies. The pathogenicity of S. scabies is thus under dual direct positive and negative transcriptional control where CebR is the cellobiose-sensing key that locks the expression of txtR, the key necessary to unlock the production of the phytotoxin. Interestingly, CebR-binding sites also lie upstream of and within the thaxtomin biosynthetic clusters in Streptomyces turgidiscabies and Streptomyces acidiscabies, suggesting that CebR is most likely an important regulator of virulence in these plant-pathogenic species as well. IMPORTANCE: What makes a microorganism pathogenic is not limited to the genes acquired for virulence. Using the main causative agent of scab lesions on root and tuber crops as an example, our work identified the subtle but essential genetic changes that generate the cis-acting elements necessary for proper timing of the expression of the cluster of genes responsible for the biosynthesis of thaxtomin A, the primary virulence factor in plant-pathogenic streptomycetes. These data illustrate a situation in which a regulator associated with primary metabolism in nonpathogens, CebR, has been coopted as a master regulator of virulence in pathogenic species. Furthermore, the manipulation of CebR-mediated control of thaxtomin production will facilitate overproduction of this natural and biodegradable herbicide for commercial purposes. Our work thus provides a concrete example of how a strictly theoretical and computational work was able to elucidate a regulatory mechanism associated with the virulence of a plant pathogen and to generate solutions to purely agro-industrial concerns.


Asunto(s)
Celobiosa/metabolismo , Regulación Bacteriana de la Expresión Génica , Indoles/metabolismo , Piperazinas/metabolismo , Proteínas Represoras/metabolismo , Streptomyces/efectos de los fármacos , Streptomyces/patogenicidad , Factores de Virulencia/biosíntesis , Sitios de Unión , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/metabolismo , Eliminación de Gen , Enfermedades de las Plantas/microbiología , Unión Proteica , Proteínas Represoras/genética , Streptomyces/genética
17.
PLoS One ; 9(6): e99345, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24927117

RESUMEN

PAISt is a large genomic island located in the chromosome of the plant pathogen Streptomyces turgidiscabies Car8. The island carries clustered virulence genes, transfers to other Streptomyces species, and integrates by site-specific recombination at the 8 bp palindrome TTCATGAA. The palindrome is located at the 3' end of the bacitracin resistance gene (bacA). We demonstrate that PAISt is able to excise in modules by recombination of one internal and two flanking palindromic direct repeats. The gene intSt located at the 3( end of PAISt encodes a tyrosine recombinase. Site-specific recombination activity of intSt was tested and confirmed by heterologous expression in Streptomyces coelicolor. Comparative analysis of PAISt homologues in Streptomyces scabies 87-22 and Streptomyces acidiscabies 84-104 indicates that these islands have been fixed by sequence erosion of intSt and the recombination sites.


Asunto(s)
Islas Genómicas , Streptomyces/genética , Factores de Virulencia/genética , ADN Bacteriano/genética , Evolución Molecular , Genes Bacterianos , Secuencias Invertidas Repetidas , Modelos Moleculares , Factores de Virulencia/química
18.
Mol Plant Microbe Interact ; 27(8): 875-85, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24678834

RESUMEN

Streptomyces scabies is the main causative agent of common scab disease, which leads to significant annual losses to potato growers worldwide. The main virulence factor produced by S. scabies is a phytotoxic secondary metabolite called thaxtomin A, which functions as a cellulose synthesis inhibitor. Thaxtomin A production is controlled by the cluster-situated regulator TxtR, which activates expression of the thaxtomin biosynthetic genes in response to cello-oligosaccharides. Here, we demonstrate that at least five additional regulatory genes are required for wild-type levels of thaxtomin A production and plant pathogenicity in S. scabies. These regulatory genes belong to the bld gene family of global regulators that control secondary metabolism or morphological differentiation in Streptomyces spp. Quantitative reverse-transcriptase polymerase chain reaction showed that expression of the thaxtomin biosynthetic genes was significantly downregulated in all five bld mutants and, in four of these mutants, this downregulation was attributed to the reduction in expression of txtR. Furthermore, all of the mutants displayed reduced expression of other known or predicted virulence genes, suggesting that the bld genes may function as global regulators of virulence gene expression in S. scabies.


Asunto(s)
Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Indoles/metabolismo , Piperazinas/metabolismo , Enfermedades de las Plantas/microbiología , Solanum tuberosum/microbiología , Streptomyces/genética , Proteínas Bacterianas/metabolismo , Regulación hacia Abajo , Eliminación de Gen , Prueba de Complementación Genética , Indoles/análisis , Familia de Multigenes , Fenotipo , Piperazinas/análisis , Raphanus/microbiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Plantones/microbiología , Streptomyces/patogenicidad , Streptomyces/fisiología , Virulencia
19.
Plant J ; 74(2): 185-96, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23346875

RESUMEN

Nematode effector proteins originating from esophageal gland cells play central roles in suppressing plant defenses and in formation of the plant feeding cells that are required for growth and development of cyst nematodes. A gene (GrUBCEP12) encoding a unique ubiquitin carboxyl extension protein (UBCEP) that consists of a signal peptide for secretion, a mono-ubiquitin domain, and a 12 amino acid carboxyl extension protein (CEP12) domain was cloned from the potato cyst nematode Globodera rostochiensis. This GrUBCEP12 gene was expressed exclusively within the nematode's dorsal esophageal gland cell, and was up-regulated in the parasitic second-stage juvenile, correlating with the time when feeding cell formation is initiated. We showed that specific GrUBCEP12 knockdown via RNA interference reduced nematode parasitic success, and that over-expression of the secreted Gr(Δ) (SP) UBCEP12 protein in potato resulted in increased nematode susceptibility, providing direct evidence that this secreted effector is involved in plant parasitism. Using transient expression assays in Nicotiana benthamiana, we found that Gr(Δ) (SP) UBCEP12 is processed into free ubiquitin and a CEP12 peptide (GrCEP12) in planta, and that GrCEP12 suppresses resistance gene-mediated cell death. A target search showed that expression of RPN2a, a gene encoding a subunit of the 26S proteasome, was dramatically suppressed in Gr(Δ) (SP) UBCEP12 but not GrCEP12 over-expression plants when compared with control plants. Together, these results suggest that, when delivered into host plant cells, Gr(Δ) (SP) UBCEP12 becomes two functional units, one acting to suppress plant immunity and the other potentially affecting the host 26S proteasome, to promote feeding cell formation.


Asunto(s)
Proteínas del Helminto/metabolismo , Tylenchoidea/metabolismo , Tylenchoidea/patogenicidad , Animales , Proteínas del Helminto/genética , Datos de Secuencia Molecular , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/parasitología , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Solanum tuberosum/parasitología , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/parasitología
20.
Mol Plant Pathol ; 14(2): 119-30, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23009676

RESUMEN

Streptomyces scabies is a model organism for the investigation of plant-microbe interactions in Gram-positive bacteria. Here, we investigate the type VII protein secretion system (T7SS) in S. scabies; the T7SS is required for the virulence of other Gram-positive bacteria, including Mycobacterium tuberculosis and Staphylococcus aureus. The hallmarks of a functional T7SS are an EccC protein that forms an essential component of the secretion apparatus and two small, sequence-related substrate proteins, EsxA and EsxB. A putative transmembrane protein, EccD, may also be associated with T7S in Actinobacteria. In this study, we constructed strains of the plant pathogen S. scabies carrying marked mutations in genes coding for EccC, EccD, EsxA and EsxB. Unexpectedly, we showed that all four mutant strains retain full virulence towards several plant hosts. However, disruption of the esxA or esxB, but not eccC or eccD, genes affects S. scabies development, including a delay in sporulation, abnormal spore chains and resistance to lysis by the Streptomyces-specific phage ϕC31. We further showed that these phenotypes are specific to the loss of the T7SS substrate proteins EsxA and EsxB, and are not observed when components of the T7SS secretion machinery are lacking. Taken together, these results imply an unexpected intracellular role for EsxA and EsxB.


Asunto(s)
Sistemas de Secreción Bacterianos , Plantas/microbiología , Streptomyces/crecimiento & desarrollo , Streptomyces/patogenicidad , Bacteriófagos/fisiología , Secuencia Conservada , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos/genética , Prueba de Complementación Genética , Mutación , Sistemas de Lectura Abierta/genética , Esporas Bacterianas/ultraestructura , Streptomyces/genética , Streptomyces/virología , Transcripción Genética , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...