Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Public Health ; 9: 695139, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34395368

RESUMEN

SARS-CoV-2 started spreading toward the end of 2019 causing COVID-19, a disease that reached pandemic proportions among the human population within months. The reasons for the spectrum of differences in the severity of the disease across the population, and in particular why the disease affects more severely the aging population and those with specific preconditions are unclear. We developed machine learning models to mine 240,000 scientific articles openly accessible in the CORD-19 database, and constructed knowledge graphs to synthesize the extracted information and navigate the collective knowledge in an attempt to search for a potential common underlying reason for disease severity. The machine-driven framework we developed repeatedly pointed to elevated blood glucose as a key facilitator in the progression of COVID-19. Indeed, when we systematically retraced the steps of the SARS-CoV-2 infection, we found evidence linking elevated glucose to each major step of the life-cycle of the virus, progression of the disease, and presentation of symptoms. Specifically, elevations of glucose provide ideal conditions for the virus to evade and weaken the first level of the immune defense system in the lungs, gain access to deep alveolar cells, bind to the ACE2 receptor and enter the pulmonary cells, accelerate replication of the virus within cells increasing cell death and inducing an pulmonary inflammatory response, which overwhelms an already weakened innate immune system to trigger an avalanche of systemic infections, inflammation and cell damage, a cytokine storm and thrombotic events. We tested the feasibility of the hypothesis by manually reviewing the literature referenced by the machine-generated synthesis, reconstructing atomistically the virus at the surface of the pulmonary airways, and performing quantitative computational modeling of the effects of glucose levels on the infection process. We conclude that elevation in glucose levels can facilitate the progression of the disease through multiple mechanisms and can explain much of the differences in disease severity seen across the population. The study provides diagnostic considerations, new areas of research and potential treatments, and cautions on treatment strategies and critical care conditions that induce elevations in blood glucose levels.


Asunto(s)
COVID-19 , Anciano , Glucemia , Síndrome de Liberación de Citoquinas , Humanos , Inflamación , SARS-CoV-2
2.
Cardiovasc Res ; 106(1): 153-62, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25616416

RESUMEN

AIMS: Duchenne muscular dystrophy (DMD), a degenerative pathology of skeletal muscle, also induces cardiac failure and arrhythmias due to a mutation leading to the lack of the protein dystrophin. In cardiac cells, the subsarcolemmal localization of dystrophin is thought to protect the membrane from mechanical stress. The absence of dystrophin results in an elevated stress-induced Ca2+ influx due to the inadequate functioning of several proteins, such as stretch-activated channels (SACs). Our aim was to investigate whether transient receptor potential vanilloid channels type 2 (TRPV2) form subunits of the dysregulated SACs in cardiac dystrophy. METHODS AND RESULTS: We defined the role of TRPV2 channels in the abnormal Ca2+ influx of cardiomyocytes isolated from dystrophic mdx mice, an established animal model for DMD. In dystrophic cells, western blotting showed that TRPV2 was two-fold overexpressed. While normally localized intracellularly, in myocytes from mdx mice TRPV2 channels were translocated to the sarcolemma and were prominent along the T-tubules, as indicated by immunocytochemistry. Membrane localization was confirmed by biotinylation assays. Furthermore, in mdx myocytes pharmacological modulators suggested an abnormal activity of TRPV2, which has a unique pharmacological profile among TRP channels. Confocal imaging showed that these compounds protected the cells from stress-induced abnormal Ca2+ signals. The involvement of TRPV2 in these signals was confirmed by specific pore-blocking antibodies and by small-interfering RNA ablation of TRPV2. CONCLUSION: Together, these results establish the involvement of TRPV2 in a stretch-activated calcium influx pathway in dystrophic cardiomyopathy, contributing to the defective cellular Ca2+ handling in this disease.


Asunto(s)
Canales de Calcio/fisiología , Cardiomiopatías/fisiopatología , Distrofia Muscular de Duchenne/fisiopatología , Miocitos Cardíacos/patología , Estrés Mecánico , Canales Catiónicos TRPV/fisiología , Animales , Calcio/metabolismo , Cardiomiopatías/patología , Células Cultivadas , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Distrofia Muscular de Duchenne/patología , Ósmosis/fisiología , Sarcolema/metabolismo , Transducción de Señal/fisiología
3.
Cell Biochem Biophys ; 66(3): 723-36, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23400933

RESUMEN

A dilated cardiomyopathy (DCM) is associated with Duchenne muscular dystrophy (DMD). The loss of dystrophin leads to membrane instability and calcium dysregulation in skeletal muscle but effects of such a loss are not elucidated at cardiomyocytes level. We sought to examine whether membrane and transverse tubules damages occur in ventricular myocytes from mdx mouse model of DMD and how they impact the function of single excitation-contraction coupling elements. Scanning ion conductance microscopy (SICM) was used to characterize the integrity loss of living mdx cardiomyocytes surface. 2D Fourier transform analysis of labeled internal networks (transverse tubules, alpha-actinin, dihydropyridine receptors, ryanodine receptors) was performed to evaluate internal alterations. During calcium measurements, "smart microperfusions" of depolarizing solutions were applied through SICM nanopipette, stimulating single tubules elements. These approaches revealed structural membrane surface (39% decrease for Z-groove ratio) and transverse tubules disorganization (21% transverse tubules ratio decrease) in mdx as compared to control. These disruptions were associated with functional alterations (sixfold increase of calcium signal duration and twofold increase of sparks frequency). In DCM associated with DMD, myocytes display evident membrane alterations at the surface level but also in the cell depth with a disruption of transverse tubules network as observed in other cases of heart failure. These ultrastructural changes are associated with changes in the function of some coupling elements. Thus, these profound disruptions may play a role in calcium dysregulation through excitation-contraction coupling elements perturbation and suggest a transverse tubules stabilizing role for dystrophin.


Asunto(s)
Membrana Celular/ultraestructura , Acoplamiento Excitación-Contracción , Imagen Molecular , Miocitos Cardíacos/citología , Animales , Calcio/metabolismo , Cardiomiopatía Dilatada/patología , Membrana Celular/metabolismo , Espacio Intracelular/metabolismo , Masculino , Ratones , Ratones Endogámicos mdx , Miocitos Cardíacos/ultraestructura , Sarcolema/metabolismo , Sarcolema/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...