Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
FEBS Lett ; 588(14): 2206-11, 2014 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-24859037

RESUMEN

The C-terminal ß-hairpin of NS2B (NS2Bc) in the dengue virus NS2B-NS3 protease is required for full enzymatic activity. In crystal structures without inhibitor and in the complex with bovine pancreatic trypsin inhibitor (BPTI), NS2Bc is displaced from the active site. In contrast, nuclear magnetic resonance (NMR) studies in solution only ever showed NS2Bc in the enzymatically active closed conformation. Here we demonstrate by pseudocontact shifts from a lanthanide tag that NS2Bc remains in the closed conformation also in the complex with BPTI. Therefore, the closed conformation is the best template for drug discovery.


Asunto(s)
Aprotinina/química , Virus del Dengue/enzimología , Proteínas no Estructurales Virales/química , Dominio Catalítico , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Estructura Secundaria de Proteína , ARN Helicasas/química , Serina Endopeptidasas/química
2.
Nucleic Acids Res ; 41(10): 5354-67, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23580545

RESUMEN

A complex of the three (αεθ) core subunits and the ß2 sliding clamp is responsible for DNA synthesis by Pol III, the Escherichia coli chromosomal DNA replicase. The 1.7 Å crystal structure of a complex between the PHP domain of α (polymerase) and the C-terminal segment of ε (proofreading exonuclease) subunits shows that ε is attached to α at a site far from the polymerase active site. Both α and ε contain clamp-binding motifs (CBMs) that interact simultaneously with ß2 in the polymerization mode of DNA replication by Pol III. Strengthening of both CBMs enables isolation of stable αεθ:ß2 complexes. Nuclear magnetic resonance experiments with reconstituted αεθ:ß2 demonstrate retention of high mobility of a segment of 22 residues in the linker that connects the exonuclease domain of ε with its α-binding segment. In spite of this, small-angle X-ray scattering data show that the isolated complex with strengthened CBMs has a compact, but still flexible, structure. Photo-crosslinking with p-benzoyl-L-phenylalanine incorporated at different sites in the α-PHP domain confirm the conformational variability of the tether. Structural models of the αεθ:ß2 replicase complex with primer-template DNA combine all available structural data.


Asunto(s)
ADN Polimerasa III/química , Proteínas de Escherichia coli/química , Exodesoxirribonucleasas/química , Secuencia de Aminoácidos , ADN Polimerasa III/metabolismo , Proteínas de Escherichia coli/metabolismo , Exodesoxirribonucleasas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Péptidos/química , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Estructura Terciaria de Proteína
3.
J Biomol NMR ; 55(1): 97-104, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23192292

RESUMEN

Stereospecific resonance assignments of the α-protons of glycine are often difficult to obtain by measurements of scalar coupling constants or nuclear Overhauser effects. Here we show that these stereospecific resonance assignments can readily be obtained by cell-free protein synthesis in D(2)O, as the serine hydroxymethyltransferase, that is naturally present in E. coli cell extracts, selectively replaces the pro-2S proton of glycine by a deuterium. To encourage the conversion by serine hydroxymethyltransferase, we performed the cell-free reaction without the addition of any glycine, exploiting the capability of the enzyme to convert serine to glycine with the help of tetrahydrofolate. (13)C-HSQC spectra of ubiquitin produced with (13)C/(15)N-serine showed that about a quarter of the glycine residues derived from serine were stereospecifically deuterated. Pulse sequences are presented that select the signals from the stereospecifically deuterated glycine residues.


Asunto(s)
Glicina/química , Resonancia Magnética Nuclear Biomolecular , Deuterio/química , Marcaje Isotópico , Metano/análogos & derivados , Metano/química
5.
Biochem Biophys Res Commun ; 418(4): 652-6, 2012 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-22293204

RESUMEN

Using aminoacyl-tRNA synthetase/suppressor tRNA pairs derived from Methanocaldococcus jannaschii, an Escherichia coli cell-free protein production system affords proteins with site-specifically incorporated unnatural amino acids (UAAs) in high yields through the use of optimized amber suppressor tRNA(CUA)(opt) and optimization of reagent concentrations. The efficiency of the cell-free system allows the incorporation of trifluoromethyl-phenylalanine using a polyspecific synthetase evolved previously for p-cyano-phenylalanine, and the incorporation of UAAs at two different sites of the same protein without any re-engineering of the E. coli cells used to make the cell-free extract.


Asunto(s)
Alanina/análogos & derivados , Aminoacil-ARNt Sintetasas/metabolismo , Escherichia coli/metabolismo , Methanococcus/enzimología , Nitrilos/metabolismo , Fenilalanina/análogos & derivados , Biosíntesis de Proteínas , Alanina/metabolismo , Aminoacil-ARNt Sintetasas/genética , Sistema Libre de Células , Codón sin Sentido , Escherichia coli/genética , Ingeniería Genética , Fenilalanina/metabolismo , ARN de Transferencia/genética , Supresión Genética
6.
J Biomol NMR ; 47(2): 143-53, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20405166

RESUMEN

Paramagnetic relaxation enhancements (PRE) present a powerful source of structural information in nuclear magnetic resonance (NMR) studies of proteins and protein-ligand complexes. In contrast to conventional PRE reagents that are covalently attached to the protein, the complex between gadolinium and three dipicolinic acid (DPA) molecules, [Gd(DPA)(3)](3-), can bind to proteins in a non-covalent yet site-specific manner. This offers straightforward access to PREs that can be scaled by using different ratios of [Gd(DPA)(3)](3-) to protein, allowing quantitative distance measurements for nuclear spins within about 15 A of the Gd(3+) ion. Such data accurately define the metal position relative to the protein, greatly enhancing the interpretation of pseudocontact shifts induced by [Ln(DPA)(3)](3-) complexes of paramagnetic lanthanide (Ln(3+)) ions other than gadolinium. As an example we studied the quaternary structure of the homodimeric GCN4 leucine zipper.


Asunto(s)
Espectroscopía de Resonancia por Spin del Electrón/métodos , Gadolinio/química , Compuestos Organometálicos/química , Proteínas/química , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/química , Distribución de Chi-Cuadrado , Medios de Contraste/química , Elementos de la Serie de los Lantanoides/química , Leucina Zippers , Modelos Moleculares , Isótopos de Nitrógeno/química , Péptidos/química , Ácidos Picolínicos/química , Conformación Proteica , Proteínas de Saccharomyces cerevisiae/química
7.
J Am Chem Soc ; 131(30): 10352-3, 2009 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-19585996

RESUMEN

Paramagnetic lanthanide ions present outstanding tools for structural biology by NMR spectroscopy. Here we show that the 3:1 complexes between dipicolinic acid and lanthanides are paramagnetic reagents which can site-specifically bind to a wide range of proteins without formation of a covalent bond. The observed pseudocontact shifts can be interpreted by a single magnetic susceptibility anisotropy tensor, enabling its use for structure refinements. The resonance assignment of the paramagnetic spectrum is greatly facilitated by the rapid exchange between bound and free protein, leading to gradual chemical shift changes as the protein is titrated with the paramagnetic dipicolinic acid complex. The association with the paramagnetic lanthanide leads to weak molecular alignment in a magnetic field so that the reagents can be used for the measurement of residual dipolar couplings without the need of protein modification or anisotropic alignment media. The protein samples can be recovered by simple dialysis.


Asunto(s)
Elementos de la Serie de los Lantanoides/química , Magnetismo , Compuestos Organometálicos/química , Ácidos Picolínicos/química , Proteínas/química , Animales , Indicadores y Reactivos/química , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Conformación Proteica
8.
Nucleic Acids Res ; 37(7): 2395-404, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19255093

RESUMEN

The helicase loader protein DnaI (the Bacillus subtilis homologue of Escherichia coli DnaC) is required to load the hexameric helicase DnaC (the B. subtilis homologue of E. coli DnaB) onto DNA at the start of replication. While the C-terminal domain of DnaI belongs to the structurally well-characterized AAA+ family of ATPases, the structure of the N-terminal domain, DnaI-N, has no homology to a known structure. Three-dimensional structure determination by nuclear magnetic resonance (NMR) spectroscopy shows that DnaI presents a novel fold containing a structurally important zinc ion. Surface plasmon resonance experiments indicate that DnaI-N is largely responsible for binding of DnaI to the hexameric helicase from B. stearothermophilus, which is a close homologue of the corresponding much less stable B. subtilis helicase.


Asunto(s)
Proteínas Bacterianas/química , AdnB Helicasas/química , Zinc/química , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , AdnB Helicasas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Resonancia por Plasmón de Superficie
10.
Nat Struct Mol Biol ; 15(2): 170-6, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18223657

RESUMEN

We present single-molecule studies of the Escherichia coli replication machinery. We visualize individual E. coli DNA polymerase III (Pol III) holoenzymes engaging in primer extension and leading-strand synthesis. When coupled to the replicative helicase DnaB, Pol III mediates leading-strand synthesis with a processivity of 10.5 kilobases (kb), eight-fold higher than that by Pol III alone. Addition of the primase DnaG causes a three-fold reduction in the processivity of leading-strand synthesis, an effect dependent upon the DnaB-DnaG protein-protein interaction rather than primase activity. A single-molecule analysis of the replication kinetics with varying DnaG concentrations indicates that a cooperative binding of two or three DnaG monomers to DnaB halts synthesis. Modulation of DnaB helicase activity through the interaction with DnaG suggests a mechanism that prevents leading-strand synthesis from outpacing lagging-strand synthesis during slow primer synthesis on the lagging strand.


Asunto(s)
ADN Polimerasa III/metabolismo , Replicación del ADN/fisiología , ADN Bacteriano/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , ADN Primasa , AdnB Helicasas/metabolismo , Endodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/metabolismo , Cinética , Modelos Biológicos , Modelos Moleculares , Unión Proteica
11.
FEBS J ; 273(21): 4997-5009, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17010164

RESUMEN

DnaG is the primase that lays down RNA primers on single-stranded DNA during bacterial DNA replication. The solution structure of the DnaB-helicase-binding C-terminal domain of Escherichia coli DnaG was determined by NMR spectroscopy at near-neutral pH. The structure is a rare fold that, besides occurring in DnaG C-terminal domains, has been described only for the N-terminal domain of DnaB. The C-terminal helix hairpin present in the DnaG C-terminal domain, however, is either less stable or absent in DnaB, as evidenced by high mobility of the C-terminal 35 residues in a construct comprising residues 1-171. The present structure identifies the previous crystal structure of the E. coli DnaG C-terminal domain as a domain-swapped dimer. It is also significantly different from the NMR structure reported for the corresponding domain of DnaG from the thermophile Bacillus stearothermophilus. NMR experiments showed that the DnaG C-terminal domain does not bind to residues 1-171 of the E. coli DnaB helicase with significant affinity.


Asunto(s)
AdnB Helicasas/química , Endodesoxirribonucleasas/química , Proteínas de Escherichia coli/química , Exodesoxirribonucleasas/química , Secuencia de Aminoácidos , ADN Primasa , Dimerización , Geobacillus stearothermophilus/enzimología , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Homología de Secuencia de Aminoácido
12.
J Biol Chem ; 280(12): 11495-504, 2005 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-15649896

RESUMEN

During bacterial DNA replication, the DnaG primase interacts with the hexameric DnaB helicase to synthesize RNA primers for extension by DNA polymerase. In Escherichia coli, this occurs by transient interaction of primase with the helicase. Here we demonstrate directly by surface plasmon resonance that the C-terminal domain of primase is responsible for interaction with DnaB6. Determination of the 2.8-angstroms crystal structure of the C-terminal domain of primase revealed an asymmetric dimer. The monomers have an N-terminal helix bundle similar to the N-terminal domain of DnaB, followed by a long helix that connects to a C-terminal helix hairpin. The connecting helix is interrupted differently in the two monomers. Solution studies using NMR showed that an equilibrium exists between a monomeric species with an intact, extended but naked, connecting helix and a dimer in which this helix is interrupted in the same way as in one of the crystal conformers. The other conformer is not significantly populated in solution, and its presence in the crystal is due largely to crystal packing forces. It is proposed that the connecting helix contributes necessary structural flexibility in the primase-helicase complex at replication forks.


Asunto(s)
Proteínas Bacterianas/química , ADN Helicasas/química , ADN Primasa/química , Proteínas de Escherichia coli/química , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cristalización , ADN Helicasas/metabolismo , Dimerización , AdnB Helicasas , Espectroscopía de Resonancia Magnética , Datos de Secuencia Molecular , Conformación Proteica , Soluciones , Resonancia por Plasmón de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...