Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Small ; 18(25): e2200688, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35599429

RESUMEN

In spite of efforts to fabricate self-assembled energy storage nanopaper with potential applications in displays, greenhouses, and sensors, few studies have investigated their multiple stimuli-sensitivities. Here, an opto- and thermal-rewrite phase change material/cellulose nanofibril (PCM/CNF) energy storage nanopaper with mechanical regulated performance is facilely fabricated, through 5 min sonication of PCMs and CNFs in an aqueous system. The combination of PCM and CNF not only guarantees the recyclability of PCM without leakage, but also offers nanopaper adaptive properties by leveraging the mobility and optical variation accompanying solid-to-liquid transition of PCM. Besides, trace near-infrared (NIR) dye (IR 780) in it imparts a PCM-embedded nanopaper photothermal effect to modulate the local transparency via time- and position-controlled laser exposure, leading to a reusable opto-writing nanopaper. Furthermore, since the synergistic effect of stick-and-slip function attributes from PCMs and pore structures are produced by calcium ions, the PCM/CNF energy storage nanopaper exhibits excellent mechanically regulated performance from rigid to flexible, which greatly enriches their application in energy-efficient smart buildings and displays.


Asunto(s)
Celulosa , Indoles , Celulosa/química , Calor , Agua
2.
Biomacromolecules ; 23(4): 1693-1702, 2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35362317

RESUMEN

Cellulose nanofibrils (CNFs) have attracted attention as building blocks for sustainable materials owing to their high performance and the advantages of their abundant natural resources. Bioinspired CNF/polymer nanocomposites, consisting of a soft polymer phase and a high fraction (>50 wt %) of CNF reinforcement, have been focused on excellent mechanical properties, including Young's modulus, mechanical strength, and toughness, mimicking the energy dissipation system in nature. However, efficient softening and toughening with a small amount of the soft phase is still a challenge because a large amount of the polymer phase (nearly 50%) is still required to provide ductility and toughness. Here, we describe a topological strategy in the polymer phase for efficient toughening of bioinspired CNF nanocomposites with a water-soluble comb polyurethane (PU). The comb PU provided higher elongation at break and more efficient flexibility for the nanocomposite than the linear PU, even at a small content. Moreover, CNF nanocomposites with 30 wt % of PU content and tetrabutylammonium as bulky counterions showed enhanced toughness (180% higher) and strain at break (250% higher) when compared to pure CNF due to the promotion of slippage between nanofibrils. Scanning electron microscopy (SEM) images of the fracture surface for CNF/comb PU nanocomposites displayed the pull-out of mesoscale layers and nanofibrils, supporting that the comb topology promotes the slippage between fibrils. Furthermore, the rheological study revealed that the comb PU has an entanglement plateau modulus lower than linear PU by 1 order of magnitude, related to the loosened entanglements. Our study establishes an efficient softening and toughening strategy while using small amounts of polymer phase addition, promoting interfibrillar slippage with the loosely entangled comb PU phase.


Asunto(s)
Nanocompuestos , Nanofibras , Celulosa , Polímeros , Poliuretanos
3.
Angew Chem Int Ed Engl ; 60(41): 22537-22546, 2021 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-34347941

RESUMEN

Compartmentalized reaction networks regulating signal processing, communication and pattern formation are central to living systems. Towards achieving life-like materials, we compartmentalized urea-urease and more complex urea-urease/ester-esterase pH-feedback reaction networks into hydrogel spheres and investigate how fuel-driven pH fronts can be sent out from these spheres and regulated by internal reaction networks. Membrane characteristics are installed by covering urease spheres with responsive hydrogel shells. We then encapsulate the two networks (urea-urease and ester-esterase) separately into different hydrogel spheres to devise communication, pattern formation and attraction. Moreover, these pH fronts and patterns can be used for self-growing hydrogels, and for developing complex geometries from non-injectable hydrogels without 3D printing tools. This study opens possibilities for compartmentalized feedback reactions and their use in next generation materials fabrication.

4.
Polymers (Basel) ; 13(10)2021 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-34068136

RESUMEN

Extremely high mechanical performance spun bionanocomposite fibers of chitosan (CHI), and cellulose nanofibers (CNFs) were successfully achieved by gel spinning of CHI aqueous viscous formulations filled with CNFs. The microstructural characterization of the fibers by X-ray diffraction revealed the crystallization of the CHI polymer chains into anhydrous chitosan allomorph. The spinning process combining acidic-basic-neutralization-stretching-drying steps allowed obtaining CHI/CNF composite fibers of high crystallinity, with enhanced effect at incorporating the CNFs. Chitosan crystallization seems to be promoted by the presence of cellulose nanofibers, serving as nucleation sites for the growing of CHI crystals. Moreover, the preferential orientation of both CNFs and CHI crystals along the spun fiber direction was revealed in the two-dimensional X-ray diffraction patterns. By increasing the CNF amount up to the optimum concentration of 0.4 wt % in the viscous CHI/CNF collodion, Young's modulus of the spun fibers significantly increased up to 8 GPa. Similarly, the stress at break and the yield stress drastically increased from 115 to 163 MPa, and from 67 to 119 MPa, respectively, by adding only 0.4 wt % of CNFs into a collodion solution containing 4 wt % of chitosan. The toughness of the CHI-based fibers thereby increased from 5 to 9 MJ.m-3. For higher CNFs contents like 0.5 wt %, the high mechanical performance of the CHI/CNF composite fibers was still observed, but with a slight worsening of the mechanical parameters, which may be related to a minor disruption of the CHI matrix hydrogel network constituting the collodion and gel fiber, as precursor state for the dry fiber formation. Finally, the rheological behavior observed for the different CHI/CNF viscous collodions and the obtained structural, thermal and mechanical properties results revealed an optimum matrix/filler compatibility and interface when adding 0.4 wt % of nanofibrillated cellulose (CNF) into 4 wt % CHI formulations, yielding functional bionanocomposite fibers of outstanding mechanical properties.

5.
Nat Commun ; 12(1): 1312, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33637751

RESUMEN

Nature fascinates with living organisms showing mechanically adaptive behavior. In contrast to gels or elastomers, it is profoundly challenging to switch mechanical properties in stiff bioinspired nanocomposites as they contain high fractions of immobile reinforcements. Here, we introduce facile electrical switching to the field of bioinspired nanocomposites, and show how the mechanical properties adapt to low direct current (DC). This is realized for renewable cellulose nanofibrils/polymer nanopapers with tailor-made interactions by deposition of thin single-walled carbon nanotube electrode layers for Joule heating. Application of DC at specific voltages translates into significant electrothermal softening via dynamization and breakage of the thermo-reversible supramolecular bonds. The altered mechanical properties are reversibly switchable in power on/power off cycles. Furthermore, we showcase electricity-adaptive patterns and reconfiguration of deformation patterns using electrode patterning techniques. The simple and generic approach opens avenues for bioinspired nanocomposites for facile application in adaptive damping and structural materials, and soft robotics.

6.
ACS Nano ; 15(3): 5043-5055, 2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33630585

RESUMEN

Nacre's natural design consists of a perfect hierarchical assembly that resembles a brick-and-mortar structure with synergistic stiffness and toughness. The field of bioinspired materials often provides attractive architecture and engineering pathways which allow to explore outstanding property areas. However, the study of nacre-mimetic materials should not be limited to the design of its architecture but ought to include the understanding, operation, and improvement of internal interactions between their components. Here, we introduce a vitrimer prepolymer system that, once integrated into the nacre-mimetic nanocomposites, cures and cross-links with the presence of Lewis acid catalyst and further manifests associative dynamic exchange reactions. Bond exchanges are controllable by molecular composition and catalyst content and characterized by creep, shear-lag, and shape-locking tests. We exploit the vitrimer properties by laminating ca. 70 films into thick bulk materials, and characterize the flexural resistance and crack propagation. More importantly, we introduce recycling by grinding and hot-pressing. The recycling for highly reinforced nacre-mimetic nanocomposites is critically enabled by the vitrimer chemistry and improves the sustainability of bioinspired nanocomposites in cyclic economy. Finally, we integrate photothermal converters into the structures and use laser irradiation as external trigger to activate the vitrimer exchange reactions.

7.
Adv Mater ; 33(5): e2005973, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33346394

RESUMEN

A generic, facile, and waterborne strategy is introduced to fabricate flexible, low-cost nanocomposite films with room-temperature phosphorescence (RTP) by incorporating waterborne RTP polymers into self-assembled bioinspired polymer/nanoclay nanocomposites. The excellent oxygen barrier of the lamellar nanoclay structure suppresses the quenching effect from ambient oxygen (kq ) and broadens the choice of polymer matrices towards lower glass transition temperature (Tg ), while providing better mechanical properties and processability. Moreover, the oxygen permeation and diffusion inside the films can be fine-tuned by varying the polymer/nanoclay ratio, enabling programmable retention times of the RTP signals, which is exploited for transient information storage and anti-counterfeiting materials. Additionally, anti-interception materials are showcased by tracing the interception-induced oxygen history that interferes with the preset self-erasing time. Merging bioinspired nanocomposite design with RTP materials contributes to overcoming the inherent limitations of molecular design of organic RTP compounds, and allows programmable temporal features to be added into RTP materials by controlled mesostructures. This will assist in paving the way for practical applications of RTP materials as novel anti-counterfeiting materials.

8.
Macromol Rapid Commun ; 41(20): e2000380, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32909331

RESUMEN

Although research in bioinspired nanocomposites is delivering mechanically superior nanocomposite materials, there remain gaps in understanding some fundamental design principles. This article discusses how the mechanical properties of nacre-mimetic polymer/nanoclay nanocomposites with nanoconfined polymer layers are controlled by the thermo-mechanical polymer properties, that is, glass transition temperature, Tg, using a series of poly(ethylene glycol methyl ether methacrylate-co-N,N-dimethylacrylamide) copolymers with tunable Tg from 130 to -55 °C. It is elucidated that both the type of copolymer and the nanoconfined polymer layer thickness control energy dissipation and inelastic deformation at high fractions of reinforcements in such bioinspired nanocomposites.


Asunto(s)
Nácar , Nanocompuestos , Biomimética , Vidrio , Temperatura de Transición
9.
Acc Chem Res ; 53(11): 2622-2635, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-32991139

RESUMEN

Bioinspired materials engineering impacts the design of advanced functional materials across many domains of sciences from wetting behavior to optical and mechanical materials. In all cases, the advances in understanding how biology uses hierarchical design to create failure and defect-tolerant materials with emergent properties lays the groundwork for engaging into these topics. Biological mechanical materials are particularly inspiring for their unique combinations of stiffness, strength, and toughness together with lightweightness, as assembled and grown in water from a limited set of building blocks at room temperature. Wood, nacre, crustacean cuticles, and spider silk serve as some examples, where the correct arrangement of constituents and balanced molecular energy dissipation mechanisms allows overcoming the shortcomings of the individual components and leads to synergistic materials performance beyond additive behavior. They constitute a paradigm for future structural materials engineering-in the formation process, the use of sustainable building blocks and energy-efficient pathways, as well as in the property profiles-that will in the long term allow for new classes of high-performance and lightweight structural materials needed to promote energy efficiency in mobile technologies.This Account summarizes our efforts of the past decade with respect to designing self-assembling bioinspired materials aiming for both mechanical high-performance structures and new types of multifunctional property profiles. The Account is set out to first give a definition of bioinspired nanocomposite materials and self-assembly therein, followed by an in-depth discussion on the understanding of mechanical performance and rational design to increase the mechanical performance. We place a particular emphasis on materials formed at high fractions of reinforcements and with tailor-made functional polymers using self-assembly to create highly ordered structures and elucidate in detail how the soft polymer phase needs to be designed in terms of thermomechanical properties and sacrificial supramolecular bonds. We focus on nanoscale reinforcements such as nanoclay and nanocellulose that lead to high contents of internal interfaces and intercalated polymer layers that experience nanoconfinement. Both aspects add fundamental challenges for macromolecular design of soft phases using precision polymer synthesis. We build upon those design criteria and further develop the concepts of adaptive bioinspired nanocomposites, whose properties are switchable from the outside using molecularly defined triggers with light. In a last section, we discuss how new types of functional properties, in particular flexible and transparent gas barrier materials or fire barrier materials, can be reached on the basis of the bioinspired nanocomposite design strategies. Additionally, we show new types of self-assembled photonic materials that can even be evolved into self-assembling lasers, hence moving the concept of mechanical nanocomposite design to other functionalities.The comparative discussion of different bioinspired nanocomposite architectures with nematic, fibrillar, and cholesteric structures, as based on different reinforcing nanoparticles, aims for a unified understanding of the design principles and shall aid researchers in the field in the more elaborate design of future bioinspired nanocomposite materials based on molecular control principles. We conclude by addressing challenges, in particular also the need for a transfer from fundamental molecular materials science into scalable engineering materials of technological and societal relevance.

10.
Nanoscale ; 12(24): 12958-12969, 2020 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-32525166

RESUMEN

The twisted plywood structure as found in crustacean shells possesses excellent mechanical properties with high stiffness and toughness. Synthetic mimics can be produced by evaporation-induced self-assembly of cellulose nanocrystals (CNCs) with polymer components into bulk films with a cholesteric liquid crystal structure. However, these are often excessively brittle and it has remained challenging to make materials combining high stiffness and toughness. Here, we describe self-assembling cholesteric CNC/polymer nanocomposites with a crustacean-mimetic structure and tunable photonic band gap, in which we engineer combinations of thermo-activated covalent and supramolecular hydrogen-bonded crosslinks to tailor the energy dissipation properties by precise molecular design. Toughening occurs upon increasing the polymer fractions in the nanocomposites, and, critically, combinations of both molecular bonding mechanisms lead to a considerable synergetic increase of stiffness and toughness - beyond the common rule of mixtures. Our concept following careful molecular design allows one to enter previously unreached areas of mechanical property charts for cholesteric CNC-based nanocomposites. The study shows that the subtle engineering of molecular energy dissipation units using sophisticated chemical approaches enables efficient enhancing of the properties of bioinspired CNC/polymer nanocomposites, and opens the design space for future molecular enhancement using tailor-made interactions.

11.
Biomacromolecules ; 21(6): 2536-2540, 2020 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-32233473

RESUMEN

Nanocellulose-based materials and nanocomposites show extraordinary mechanical properties with high stiffness, strength, and toughness. Although the last decade has witnessed great progress in understanding the mechanical properties of these materials, a crucial challenge is to identify pathways to introduce high wet strength, which is a critical parameter for commercial applications. Because of the waterborne fabrication methods, nanocellulose-based materials are prone to swelling by both adsorption of moist air or liquid water. Unfortunately, there is currently no best practice on how to take the swelling into account when reporting mechanical properties at different relative humidity or when measuring the mechanical properties of fully hydrated materials. This limits and in parts fully prevents comparisons between different studies. We review current approaches and propose a best practice for measuring and reporting mechanical properties of wet nanocellulose-based materials, highlighting the importance of swelling and the correlation between mechanical properties and volume expansion.


Asunto(s)
Celulosa , Nanocompuestos , Agua
12.
ACS Macro Lett ; 9(1): 70-76, 2020 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35638652

RESUMEN

We demonstrate waterborne, unimolecularly dissolved vitrimer prepolymer systems that can be transferred into a vitrimer material using catalytic transesterification. The one-component prepolymer system can be processed via film casting and subsequent heat-induced cross-linking. A variation of the density of side chain hydroxy groups over ester and amide groups in the methacrylate/methacrylamide backbone, as well as of the Lewis acid catalyst loading, allow control of the extent of cross-linking and exchange rates. The increase of the amount of both catalyst and hydroxy groups leads to an acceleration of the relaxation times and a decrease of the activation energy of the transesterification reactions. The system features elastomeric properties, and the tensile properties are maintained after two recycling steps. Thus far, vitrimers have been limited largely to hydrophobic polymers; this system is a step forward toward waterborne, one-component materials, and we demonstrate its use in waterborne bioinspired nanocomposites.

13.
Biomacromolecules ; 20(2): 1045-1055, 2019 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-30589531

RESUMEN

Nanopapers containing cellulose nanofibrils (CNFs) are an emerging and sustainable class of high performance materials. The diversification and improvement of the mechanical and functional property space critically depend on integration of CNFs with rationally designed, tailor-made polymers following bioinspired nanocomposite designs. Here we combine for the first time CNFs with colloidal dispersions of vitrimer nanoparticles (VP) into mechanically coherent nanopaper materials. Vitrimers are permanently cross-linked polymer networks that undergo temperature-induced bond shuffling through an associative mechanism and which allow welding and reshaping on the macroscale. The choice of low glass transition, hydrophobic vitrimers derived from fatty acids and polydimethylsiloxane (PDMS), and achieving dynamic reshuffling of cross-links through transesterification reactions enables excellent compatibility and covalent attachment onto the CNF surfaces. Moreover, the resulting films are ductile, stretchable and offer high water resistance. The success of imparting the vitrimeric polymeric behavior into the nanocomposite, as well as the curing mechanism of the vitrimer, is highlighted through thorough analysis of structural and mechanical properties. The dynamic exchange chemistry of the vitrimers enables efficient welding of two nanocomposite parts as characterized by good bonding strength during single lap shear tests. In the future, we expect that the dynamic character of vitrimers becomes a promising option for the design of mechanically adaptive bioinspired nanocomposites and for shaping and reshaping such materials.


Asunto(s)
Celulosa/química , Nanofibras/química , Nanopartículas/química , Polímeros/química , Agua/química , Adhesividad , Dimetilpolisiloxanos/química , Ácidos Grasos/química , Nanocompuestos/química , Temperatura
14.
ACS Appl Mater Interfaces ; 10(24): 20250-20255, 2018 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-29856207

RESUMEN

The development of on-demand cross-linking strategies is a key aspect in promoting mechanical properties of high-performance bioinspired nanocomposites. Here, we embed styrene sulfonyl azide groups with latent chemical reactivity into water-soluble copolymers and assemble those with high-aspect-ratio synthetic nanoclays to generate well-defined layered polymer/nanoclay nacre-mimetics. A considerable stiffening and strengthening occurs upon activation of the covalent cross-linking using simple heating. Varying the amount of cross-linkable units allows molecular control of mechanical properties from ductile to stiff and strong. Moreover, the covalent cross-linking enhances the moisture stability of water-borne nacre-mimetics. The strategy is facile and versatile allowing for a transfer into applications.

15.
Biomacromolecules ; 17(7): 2417-26, 2016 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-27303948

RESUMEN

Cellulose nanofibrils (CNFs) are considered next generation, renewable reinforcements for sustainable, high-performance bioinspired nanocomposites uniting high stiffness, strength and toughness. However, the challenges associated with making well-defined CNF/polymer nanopaper hybrid structures with well-controlled polymer properties have so far hampered to deduce a quantitative picture of the mechanical properties space and deformation mechanisms, and limits the ability to tune and control the mechanical properties by rational design criteria. Here, we discuss detailed insights on how the thermo-mechanical properties of tailor-made copolymers govern the tensile properties in bioinspired CNF/polymer settings, hence at high fractions of reinforcements and under nanoconfinement conditions for the polymers. To this end, we synthesize a series of fully water-soluble and nonionic copolymers, whose glass transition temperatures (Tg) are varied from -60 to 130 °C. We demonstrate that well-defined polymer-coated core/shell nanofibrils form at intermediate stages and that well-defined nanopaper structures with tunable nanostructure arise. The systematic correlation between the thermal transitions in the (co)polymers, as well as its fraction, on the mechanical properties and deformation mechanisms of the nanocomposites is underscored by tensile tests, SEM imaging of fracture surfaces and dynamic mechanical analysis. An optimum toughness is obtained for copolymers with a Tg close to the testing temperature, where the soft phase possesses the best combination of high molecular mobility and cohesive strength. New deformation modes are activated for the toughest compositions. Our study establishes quantitative structure/property relationships in CNF/(co)polymer nanopapers and opens the design space for future, rational molecular engineering using reversible supramolecular bonds or covalent cross-linking.


Asunto(s)
Celulosa/química , Nanocompuestos/química , Nanofibras/química , Polímeros/química , Agua/química , Vidrio , Resistencia a la Tracción , Temperatura de Transición
16.
Angew Chem Int Ed Engl ; 55(20): 5966-70, 2016 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-27061218

RESUMEN

Mechanical gradients are important as tough joints, for strain field engineering in printable electronics, for actuators, and for biological studies, yet they are difficult to prepare and quantitatively characterize. We demonstrate the additive fabrication of gradient bioinspired nanocomposites based on stiff, renewable cellulose nanofibrils that are bottom-up toughened via a tailor-made copolymer. Direct filament writing of different nanocomposite hydrogels in patterns, and subsequent healing of the filaments into continuous films while drying leads to a variety of linear, parabolic and striped bulk gradients. In situ digital image correlation under tensile deformation reveals important differences in the strain fields regarding asymmetry and step heights of the patterns. We envisage that merging top-down and bottom-up structuring of nanocellulose hybrids opens avenues for aperiodic and multiscale, bioinspired nanocomposites with optimized combinations of stiffness and toughness.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA