Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nature ; 633(8031): 932-940, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39232161

RESUMEN

CDK1 has been known to be the sole cyclin-dependent kinase (CDK) partner of cyclin B1 to drive mitotic progression1. Here we demonstrate that CDK5 is active during mitosis and is necessary for maintaining mitotic fidelity. CDK5 is an atypical CDK owing to its high expression in post-mitotic neurons and activation by non-cyclin proteins p35 and p392. Here, using independent chemical genetic approaches, we specifically abrogated CDK5 activity during mitosis, and observed mitotic defects, nuclear atypia and substantial alterations in the mitotic phosphoproteome. Notably, cyclin B1 is a mitotic co-factor of CDK5. Computational modelling, comparison with experimentally derived structures of CDK-cyclin complexes and validation with mutational analysis indicate that CDK5-cyclin B1 can form a functional complex. Disruption of the CDK5-cyclin B1 complex phenocopies CDK5 abrogation in mitosis. Together, our results demonstrate that cyclin B1 partners with both CDK5 and CDK1, and CDK5-cyclin B1 functions as a canonical CDK-cyclin complex to ensure mitotic fidelity.


Asunto(s)
Ciclina B1 , Quinasa 5 Dependiente de la Ciclina , Mitosis , Complejos Multiproteicos , Humanos , Coenzimas/metabolismo , Ciclina B1/metabolismo , Quinasa 5 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 5 Dependiente de la Ciclina/deficiencia , Quinasa 5 Dependiente de la Ciclina/genética , Quinasa 5 Dependiente de la Ciclina/metabolismo , Células HeLa , Modelos Moleculares , Complejos Multiproteicos/metabolismo , Mutación , Fosfoproteínas/metabolismo , Unión Proteica , Proteoma/metabolismo , Reproducibilidad de los Resultados
2.
Bioorg Med Chem ; 93: 117459, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37659217

RESUMEN

A facile and efficient approach utilizing copper-mediated cross-coupling reaction of N-boc-3-indolylsulfoximines with aryl iodides was developed to synthesize a diverse range of N-arylated indolylsulfoximines 11a-m in excellent yields (up to 91%). The key precursors, free NH sulfoximines 9 were readily prepared by the treatment of N-boc-3-methylthioindoles 8 with a combination of IBD and ammonium carbamate. Under similar conditions NH-free indolylsulfoximine 9a was successfully prepared in gram-scale quantities. The reaction is highly chemoselective and tolerant of a wide range of functional groups. The process is environmentally friendly and is amenable to scale-up. Among the prepared N-arylated indolylsulfoximines 11a-m, compounds 11i-j (2.68-2.76 µM), 11f-g (1.9-3.7 µM) and 11k (1.28 µM) showed potent and selective cytotoxicity against 22Rv1, C4-2 and MCF7 cells, respectively. Indolylsulfoximine derivative 11l displayed a broad spectrum of activity (1.7-8.2 µM) against the tested cancer cell lines. These compounds were found to be non-cytotoxic to normal HEK293 cells, indicating their potential selectivity for cancer cells. We analysed the impact of 11l on various cellular assays to uncover its mechanism of action. Cellular assay shows that 11l increases the endogenous level of ROS, leading to the increased level of p-53 and c-jun inducing apoptosis. 11l also induced mitochondrial dysfunction, further promoting apoptotic pathways. Besides, 11l also restricts cell invasiveness, indicating that it could serve as an effective anti-metastatic agent. As oxidative stress severe F actin causing tubulin depolymerization, we examined the impact of 11l on tubulin dynamics. Accordingly, 11l treatment decreased the levels of polymerized tubulin in 22Rv1 and C4-2 cells. Although future studies are needed to determine their exact molecular target(s), our data shows that N-aryl indolylsulfoximines could serve as effective anti-cancer agents.


Asunto(s)
Antineoplásicos , Tubulina (Proteína) , Humanos , Células HEK293 , Antineoplásicos/farmacología , Estrés Oxidativo , Citoesqueleto de Actina
3.
Cell Rep ; 25(11): 3215-3228.e9, 2018 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-30540952

RESUMEN

Molecular- and cellular-based therapies have the potential to reduce obesity-associated disease. In response to cold, beige adipocytes form in subcutaneous white adipose tissue and convert energy stored in metabolic substrates to heat, making them an attractive therapeutic target. We developed a robust method to generate a renewable source of human beige adipocytes from induced pluripotent stem cells (iPSCs). Developmentally, these cells are derived from FOXF1+ mesoderm and progress through an expandable mural-like mesenchymal stem cell (MSC) to form mature beige adipocytes that display a thermogenically active profile. This includes expression of uncoupling protein 1 (UCP1) concomitant with increased uncoupled respiration. With this method, dysfunctional adipogenic precursors can be reprogrammed and differentiated into beige adipocytes with increased thermogenic function and anti-diabetic secretion potential. This resource can be used to (1) elucidate mechanisms that underlie the control of beige adipogenesis and (2) generate material for cellular-based therapies that target metabolic syndrome in humans.


Asunto(s)
Adipocitos Beige/trasplante , Síndrome Metabólico/terapia , Adipocitos Beige/citología , Diferenciación Celular , Línea Celular , Factores de Transcripción Forkhead/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Interleucina-4/farmacología , Células Madre Mesenquimatosas/citología , Mesodermo/citología , Transducción de Señal , Circulación Esplácnica , Factor de Crecimiento Transformador beta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...