Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Anim Biotechnol ; 35(1): 2346808, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38739483

RESUMEN

This study aimed to evaluate the effect of miR-23b-3p on growth hormone (GH) in pituitary cells of Yanbian yellow cattle. The mRNA and protein levels of GH and miR-23b-3p target genes were measured by real time fluorescence quantitative PCR (qPCR) and Western blot, respectively. The target relationship of miR-23b-3p was validated by double luciferase reporter gene system. The results showed that GH mRNA and protein levels in pituitary cells of Yanbian yellow cattle were significantly lower in the miR-23b-3p-mi group than in the NC group (P<0.01), while GH mRNA and protein levels were higher in the miR-23b-3p-in group than in the iNC group (P<0.05). The result of bioinformatics analysis and double luciferase reporter gene system validation proved that miR-23b-3p targeted 3'UTR of pituitary specific transcription factor 1 (POU1F1). POU1F1 mRNA and protein levels were lower miR-23b-3p-mi group than in the NC group (P<0.01), while POU1F1 mRNA and protein levels were higher in the miR-23b-3p-in group than in the iNC group (P<0.01). These results demonstrated that miR-23b-3p could regulate GH expression in pituitary cells by regulating POU1F1 gene.


Asunto(s)
Hormona del Crecimiento , MicroARNs , Factor de Transcripción Pit-1 , Animales , Bovinos/genética , MicroARNs/genética , MicroARNs/metabolismo , Hormona del Crecimiento/genética , Hormona del Crecimiento/metabolismo , Factor de Transcripción Pit-1/genética , Factor de Transcripción Pit-1/metabolismo , Hipófisis/metabolismo , Regulación de la Expresión Génica , Regiones no Traducidas 3'/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
2.
Sci Rep ; 12(1): 5926, 2022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-35396568

RESUMEN

MicroRNAs (miRNAs) play a vital role in improving meat quality by binding to messenger RNAs (mRNAs). We performed an integrated analysis of miRNA and mRNA expression profiling between bulls and steers based on the differences in meat quality traits. Fat and fatty acids are the major phenotypic indices of meat quality traits to estimate between-group variance. In the present study, 90 differentially expressed mRNAs (DEGs) and 18 differentially expressed miRNAs (DEMs) were identified. Eighty-three potential DEG targets and 18 DEMs were used to structure a negative interaction network, and 75 matching target genes were shown in this network. Twenty-six target genes were designated as intersection genes, screened from 18 DEMs, and overlapped with the DEGs. Seventeen of these genes enriched to 19 terms involved in lipid metabolism. Subsequently, 13 DEGs and nine DEMs were validated using quantitative real-time PCR, and seven critical genes were selected to explore the influence of fat and fatty acids through hub genes and predict functional association. A dual-luciferase reporter and Western blot assays confirmed a predicted miRNA target (bta-miR-409a and PLIN5). These findings provide substantial evidence for molecular genetic controls and interaction among genes in cattle.


Asunto(s)
Redes Reguladoras de Genes , MicroARNs , Animales , Bovinos/genética , Ácidos Grasos , Perfilación de la Expresión Génica , Masculino , Carne , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero/genética
3.
Anim Biotechnol ; 32(3): 292-299, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31697176

RESUMEN

Yanbian yellow cattle breeding is limited by slow growth. We previously found that the miRNA miR-93 was differentially expressed between the blood exosomes of Yanbian yellow cattle and Han Yan cattle, which differ in growth characteristics. In this experiment, we evaluated the effects of miR-93 on growth hormone (GH) secretion by pituitary cells of Yanbian yellow cattle using qPCR, Western blot, Targetscan and RNA hybrid analysis software and Dual-Luciferase reporter gene system. The results showed that miR-93 targeted 3' UTR of GHRHR(growth hormone releasing hormone receptor); GH mRNA and protein levels in pituitary cells of Yanbian yellow cattle were significantly lower in the miR-93-mi group than in the NC control group (p < 0.01), while GH mRNA and protein levels were higher in the miR-93-in group than in the iNC control group, but the difference was not significant (p > 0.05); GHRHR mRNA and protein levels were significantly lower in the miR-93-mi group than in the NC control group (p < 0.01), while GHRHR protein levels were significantly higher in the miR-93-in group than in the iNC control group (p < 0.05), but there was no significant difference about GHRHR mRNA level between two groups (p > 0.05). These results prove that miR-93 regulates GH secretion in pituitary cells via GHRHR.


Asunto(s)
Bovinos/genética , Hormona del Crecimiento/metabolismo , MicroARNs/genética , Hipófisis/citología , Animales , Regulación de la Expresión Génica/fisiología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Hormona Reguladora de Hormona Hipofisaria/genética , Receptores de Hormona Reguladora de Hormona Hipofisaria/metabolismo
4.
Anim Sci J ; 91(1): e13420, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32618083

RESUMEN

This study aimed to evaluate the effect of miR-10b on growth hormone (GH) in pituitary cells of Yanbian yellow cattle. According to analysis of GH and somatostatin receptor 2 (SSTR2) mRNA and protein expression levels, we found that miR-10b targeted 3'UTR of SSTR2. Compared with the negative control (NC) group, GH mRNA transcription and protein expression in pituitary cells of Yanbian yellow cattle were significantly increased by adding miR-10b mimics (p < .01), while these were significantly decreased by adding miR-10b inhibitor (p < .05); compared with the NC group, SSTR2 mRNA transcription and protein expression were significantly inhibited by the addition of miR-10b mimics (p < .01), while these were significantly increased by the addition of miR-10b inhibitor compared with the iNC group (p < .05). This study suggested that miR-10b could regulate GH level by regulating SSTR2 gene expression in pituitary cells of Yanbian yellow cattle.


Asunto(s)
Bovinos/genética , Bovinos/metabolismo , Regulación de la Expresión Génica/genética , Expresión Génica/genética , Hormona del Crecimiento/genética , Hormona del Crecimiento/metabolismo , MicroARNs/genética , MicroARNs/fisiología , Hipófisis/citología , Hipófisis/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Somatostatina/metabolismo , Transfección , Animales , Células Cultivadas , MicroARNs/metabolismo
5.
Transgenic Res ; 26(5): 677-687, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28748301

RESUMEN

Producing aflatoxin-detoxifizyme (ADTZ) in pigs to control the AFT contamination of pig feed is a new research strategy by transgenic technology. In this study, transgenic pigs specifically expressing ADTZ gene in the parotid gland were successfully produced by somatic cell nuclear transfer technology. The ADTZ activity in saliva of 6 transgenic pigs was found to be 7.11 ± 2.63 U/mL. The feeding trial with aflatoxin (AFT) results showed that there were significant difference about the serum biochemical index such as total protein (TP), albumin (ALB), globulin (GLB) contents and alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activity and AFT residues in serum and liver between the pigs in the test treatment (transgenic pigs) producing ADTZ and those in the positive control (P < 0.05). In order to investigate the inheritance of the transgene, 11 G1 transgenic pigs were successfully obtained. The ADTZ activity in saliva of 11 G1 transgenic pigs was found to be 5.82 ± 1.53 U/mL. The feeding trial with AFT results showed that the serum biochemical index containing TP, ALB and GLB contents and ALT and AST activity and AFB1 residues in serum and liver of the pigs in the test treatment (transgenic pigs) producing ADTZ were significantly different than those in the positive control (P < 0.05). The above results demonstrated that ADTZ produced in transgenic pigs could improve the effect of the AFT contamination of feed on pigs.


Asunto(s)
Animales Modificados Genéticamente/genética , Hígado/metabolismo , Complejos Multienzimáticos/genética , Glándula Parótida/metabolismo , Aflatoxinas/administración & dosificación , Animales , Proteínas Sanguíneas/genética , Hígado/efectos de los fármacos , Complejos Multienzimáticos/biosíntesis , Saliva/efectos de los fármacos , Saliva/metabolismo , Albúmina Sérica/genética , Porcinos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...