Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Proteome Res ; 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39213495

RESUMEN

Hepatocellular carcinoma (HCC) is a highly lethal cancer, and proteomic studies have shown increased protein diversity and abundance in HCC tissues, whereas the role of protein translation has not been extensively explored in HCC. Our research focused on key molecules in the translation process to identify a potential contributor in HCC. We discovered that EIF4G2, a crucial translation initiation factor, is significantly upregulated in HCC tissues and associated with poor prognosis. This study uniquely highlights the impact of EIF4G2 deletion, which suppresses tumor growth and metastasis both in vitro and in vivo. Furthermore, polysome analysis and nascent protein synthesis assays revealed EIF4G2's role in regulating protein translation, specifically identifying PLEKHA1 as a key translational product. This represents a novel mechanistic insight into HCC malignancy. RNA immunoprecipitation (RIP) and Dual-luciferase reporter assays further revealed that EIF4G2 facilitates PLEKHA1 translation via an IRES-dependent manner. Importantly, the synergistic effects of EIF4G2 depletion and PLEKHA1 reduction in inhibiting cell migration and invasion underscore the therapeutic potential of targeting this axis. This study not only advances our understanding of translational regulation in HCC but also identifies the EIF4G2-PLEKHA1 axis as a promising therapeutic target, offering new avenues for intervention in HCC treatment.

2.
Sci Rep ; 14(1): 8013, 2024 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580754

RESUMEN

Hepatocellular carcinoma (HCC) seriously threatens human health, mostly developed from liver fibrosis or cirrhosis. Since diethylnitrosamine (DEN) and carbon tetrachloride (CCl4)-induced HCC mouse model almost recapitulates the characteristic of HCC with fibrosis and inflammation, it is taken as an essential tool to investigate the pathogenesis of HCC. However, a comprehensive understanding of the protein expression profile of this model is little. In this study, we performed proteomic analysis of this model to elucidate its proteomic characteristics. Compared with normal liver tissues, 432 differentially expressed proteins (DEPs) were identified in tumor tissues, among which 365 were up-regulated and 67 were down-regulated. Through Gene Ontology (GO) analysis, Ingenuity Pathway Analysis (IPA), protein-protein interaction networks (PPI) analysis and Gene-set enrichment analysis (GSEA) analysis of DEPs, we identified two distinguishing features of DEN and CCl4-induced HCC mouse model in protein expression, the upregulation of actin cytoskeleton and branched-chain amino acids metabolic reprogramming. In addition, matching DEPs from the mouse model to homologous proteins in the human HCC cohort revealed that the DEN and CCl4-induced HCC mouse model was relatively similar to the subtype of HCC with poor prognosis. Finally, combining clinical information from the HCC cohort, we screened seven proteins with prognostic significance, SMAD2, PTPN1, PCNA, MTHFD1L, MBOAT7, FABP5, and AGRN. Overall, we provided proteomic data of the DEN and CCl4-induced HCC mouse model and highlighted the important proteins and pathways in it, contributing to the rational application of this model in HCC research.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas Experimentales , Neoplasias Hepáticas , Ratones , Animales , Humanos , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proteómica , Neoplasias Hepáticas Experimentales/inducido químicamente , Neoplasias Hepáticas Experimentales/genética , Neoplasias Hepáticas Experimentales/metabolismo , Dietilnitrosamina/efectos adversos , Cirrosis Hepática/patología , Modelos Animales de Enfermedad , Proteínas de Unión a Ácidos Grasos
3.
Sci Adv ; 8(14): eabl5765, 2022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-35385312

RESUMEN

Ubiquitination-mediated protein degradation in both the 26S proteasome and vacuole is an important process in abscisic acid (ABA) signaling. However, the role of deubiquitination in this process remains elusive. Here, we demonstrate that two deubiquitinating enzymes (DUBs), ubiquitin-specific protease 12 (UBP12) and UBP13, modulate ABA signaling and drought tolerance by deubiquitinating and stabilizing the endosomal sorting complex required for transport-I (ESCRT-I) component vacuolar protein sorting 23A (VPS23A) and thereby affect the stability of ABA receptors in Arabidopsis thaliana. Genetic analysis showed that VPS23A overexpression could rescue the ABA hypersensitive and drought tolerance phenotypes of ubp12-2w or ubp13-1. In addition to the direct regulation of VPS23A, we found that UBP12 and UBP13 also stabilized the E3 ligase XB3 ortholog 5 in A. thaliana (XBAT35.2) in response to ABA treatment. Hence, we demonstrated that UBP12 and UBP13 are previously unidentified rheostatic regulators of ABA signaling and revealed a mechanism by which deubiquitination precisely monitors the XBAT35/VPS23A ubiquitination module in the ABA response.


Asunto(s)
Ácido Abscísico , Proteínas de Arabidopsis , Arabidopsis , Enzimas Desubicuitinizantes , Ubiquitina-Proteína Ligasas , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Enzimas Desubicuitinizantes/metabolismo , Endopeptidasas/genética , Endopeptidasas/metabolismo , Regulación de la Expresión Génica de las Plantas , Transporte de Proteínas , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
4.
Int J Mol Sci ; 21(18)2020 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-32957608

RESUMEN

Seed development, dormancy, and germination are key physiological events that are not only important for seed generation, survival, and dispersal, but also contribute to agricultural production. RNA-binding proteins (RBPs) directly interact with target mRNAs and fine-tune mRNA metabolism by governing post-transcriptional regulation, including RNA processing, intron splicing, nuclear export, trafficking, stability/decay, and translational control. Recent studies have functionally characterized increasing numbers of diverse RBPs and shown that they participate in seed development and performance, providing significant insight into the role of RBP-mRNA interactions in seed processes. In this review, we discuss recent research progress on newly defined RBPs that have crucial roles in RNA metabolism and affect seed development, dormancy, and germination.


Asunto(s)
Germinación/fisiología , Latencia en las Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Unión al ARN/metabolismo , Semillas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/genética , Germinación/genética , Proteínas de Plantas/genética , Dominios Proteicos/genética , Procesamiento Proteico-Postraduccional , Procesamiento Postranscripcional del ARN , Proteínas de Unión al ARN/genética , Semillas/genética , Semillas/metabolismo , Transducción de Señal/genética
5.
Mol Plant ; 13(8): 1134-1148, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32439321

RESUMEN

The Salt-Overly-Sensitive (SOS) signaling module, comprising the sodium-transport protein SOS1 and the regulatory proteins SOS2 and SOS3, is well known as the central salt excretion system, which helps protect plants against salt stress. Here we report that VPS23A, a component of the ESCRT (endosomal sorting complex required for transport), plays an essential role in the function of the SOS module in conferring plant salt tolerance. VPS23A enhances the interaction of SOS2 and SOS3. In the presence of salt stress, VPS23A positively regulates the redistribution of SOS2 to the plasma membrane, which then activates the antiporter activity of SOS1 to reduce Na+ accumulation in plant cells. Genetic evidence demonstrated that plant salt tolerance achieved by the overexpression of SOS2 and SOS3 dependeds on VPS23A. Taken together, our results revealed that VPS23A is a crucial regulator of the SOS module and affects the localization of SOS2 to the cell membrane. Moreover, the strong salt tolerance of Arabidopsis seedlings conferred by the engineered membrane-bound SOS2 revealed the significance of SOS2 sorting to the cell membrane in achieving its function, providing a potential strategy for crop salt tolerance engineering.


Asunto(s)
Arabidopsis/fisiología , Complejos de Clasificación Endosomal Requeridos para el Transporte/fisiología , Tolerancia a la Sal/fisiología , Proteínas de Arabidopsis/fisiología , Membrana Celular/fisiología , Mutación , Potasio/metabolismo , Proteínas Serina-Treonina Quinasas/fisiología , Sodio/metabolismo
6.
Mol Plant ; 9(12): 1570-1582, 2016 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-27856401

RESUMEN

Recent discovery of PYR/PYL/RCAR-type abscisic acid (ABA) receptors has become one of most significant advances in plant science in the past decade. In mammals, endosomal sorting acts as an important pathway to downregulate different types of receptors, but its role in plant hormone signaling is poorly understood. Here, we report that an ubiquitin E2-like protein, VPS23A, which is a key component of ESCRT-I, negatively regulates ABA signaling. VPS23A has epistatic relationship with PYR/PYL/RCAR-type ABA receptors and disruption of VPS23A enhanced the activity of key kinase OST1 in the ABA signaling pathway under ABA treatment. Moreover, VPS23A interacts with PYR1/PYLs and K63-linked diubiquitin, and PYL4 possesses K63-linked ubiquitinated modification in vivo. Further analysis revealed that VPS23A affects the subcellular localization of PYR1 and the stability of PYL4. Taken together, our results suggest that VPS23A affects PYR1/PYL4 via vacuole-mediated degradation, providing an advanced understanding of both the turnover of ABA receptors and ESCRTs in plant hormone signaling.


Asunto(s)
Ácido Abscísico/farmacología , Proteínas de Arabidopsis/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Regulación de la Expresión Génica de las Plantas , Unión Proteica/efectos de los fármacos , Unión Proteica/genética , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
7.
Plant J ; 82(1): 81-92, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25704231

RESUMEN

Salt stress is a detrimental factor for plant growth and development. The response to salt stress has been shown to involve components in the intracellular trafficking system, as well as components of the ubiquitin-proteasome system (UPS). In this article, we have identified in Arabidopsis thaliana a little reported ubiquitin ligase involved in salt-stress response, which we named STRF1 (Salt Tolerance RING Finger 1). STRF1 is a member of RING-H2 finger proteins and we demonstrate that it has ubiquitin ligase activity in vitro. We also show that STRF1 localizes mainly at the plasma membrane and at the intracellular endosomes. strf1-1 loss-of-function mutant seedlings exhibit accelerated endocytosis in roots, and have altered expression of several genes involved in the membrane trafficking system. Moreover, protein trafficking inhibitor, brefeldin A (BFA), treatment has increased BFA bodies in strf1-1 mutant. This mutant also showed increased tolerance to salt, ionic and osmotic stresses, reduced accumulation of reactive oxygen species during salt stress, and increased expression of AtRbohD, which encodes a nicotinamide adenine dinucleotide phosphate (NADPH) oxidase involved in H2 O2 production. We conclude that STRF1 is a membrane trafficking-related ubiquitin ligase, which helps the plant to respond to salt stress by monitoring intracellular membrane trafficking and reactive oxygen species (ROS) production.


Asunto(s)
Arabidopsis/enzimología , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico , Ubiquitina-Proteína Ligasas/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brefeldino A/farmacología , Membrana Celular/enzimología , Endosomas/enzimología , Membranas Intracelulares/metabolismo , Mutación , Presión Osmótica , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Complejo de la Endopetidasa Proteasomal/metabolismo , Transporte de Proteínas , Dominios RING Finger , Especies Reactivas de Oxígeno/metabolismo , Tolerancia a la Sal , Plantones/efectos de los fármacos , Plantones/enzimología , Plantones/genética , Plantones/fisiología , Cloruro de Sodio/farmacología , Ubiquitina-Proteína Ligasas/genética
8.
Plant Cell ; 27(1): 214-27, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25616872

RESUMEN

The plant hormone abscisic acid (ABA) regulates many aspects of plant development and the stress response. The intracellular E3 ligase SDIR1 (SALT- AND DROUGHT-INDUCED REALLY INTERESTING NEW GENE FINGER1) plays a key role in ABA signaling, regulating ABA-related seed germination and the stress response. In this study, we found that SDIR1 is localized on the endoplasmic reticulum membrane in Arabidopsis thaliana. Using cell biology, molecular biology, and biochemistry approaches, we demonstrated that SDIR1 interacts with and ubiquitinates its substrate, SDIRIP1 (SDIR1-INTERACTING PROTEIN1), to modulate SDIRIP1 stability through the 26S proteasome pathway. SDIRIP1 acts genetically downstream of SDIR1 in ABA and salt stress signaling. In detail, SDIRIP1 selectively regulates the expression of the downstream basic region/leucine zipper motif transcription factor gene ABA-INSENSITIVE5, rather than ABA-RESPONSIVE ELEMENTS BINDING FACTOR3 (ABF3) or ABF4, to regulate ABA-mediated seed germination and the plant salt response. Overall, the SDIR1/SDIRIP1 complex plays a vital role in ABA signaling through the ubiquitination pathway.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Arabidopsis/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Plantas Modificadas Genéticamente , Dominios RING Finger , Transducción de Señal/efectos de los fármacos , Cloruro de Sodio/farmacología , Estrés Fisiológico/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...