Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Phys Condens Matter ; 20(11): 114114, 2008 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-21694207

RESUMEN

Accurate simulation of multicomponent alloys demands a first-principles approach because empirical potentials become increasingly inaccurate and difficult to develop with each additional constituent element. In contrast, the computational difficulty of simulating an alloy from first principles remains essentially independent of the number of elements. However, equilibration times increase with the number of elements, regardless of the choice of interaction, owing to the need for longer-range diffusion to adequately sample configuration space. The difficulty is exacerbated at low temperatures because of the rapid decline of diffusion constants. Here we discuss the application of replica exchange molecular dynamics to aid equilibration of supercooled alloys, and we also mention the possibility of Hamiltonian exchange molecular dynamics to accelerate equilibration at high temperatures.

2.
Phys Rev Lett ; 93(15): 156407, 2004 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-15524915

RESUMEN

Our powder inelastic neutron scattering data indicate that ZnV2O4 is a system of spin chains that are three-dimensionally tangled in the cubic phase above 50 K due to randomly occupied t(2g) orbitals of V3+ (3d(2)) ions. Below 50 K in the tetragonal phase, the chains become straight due to antiferro-orbital ordering. This is evidenced by the characteristic wave vector dependence of the magnetic structure factor that changes from symmetric to asymmetric at the cubic-to-tetragonal transition.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...