Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Adv Sci (Weinh) ; 11(9): e2306576, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38093507

RESUMEN

Sex disparities in serum bile acid (BA) levels and Alzheimer's disease (AD) prevalence have been established. However, the precise link between changes in serum BAs and AD development remains elusive. Here, authors quantitatively determined 33 serum BAs and 58 BA features in 4 219 samples collected from 1 180 participants from the Alzheimer's Disease Neuroimaging Initiative. The findings revealed that these BA features exhibited significant correlations with clinical stages, encompassing cognitively normal (CN), early and late mild cognitive impairment, and AD, as well as cognitive performance. Importantly, these associations are more pronounced in men than women. Among participants with progressive disease stages (n = 660), BAs underwent early changes in men, occurring before AD. By incorporating BA features into diagnostic and predictive models, positive enhancements are achieved for all models. The area under the receiver operating characteristic curve improved from 0.78 to 0.91 for men and from 0.76 to 0.83 for women for the differentiation of CN and AD. Additionally, the key findings are validated in a subset of participants (n = 578) with cerebrospinal fluid amyloid-beta and tau levels. These findings underscore the role of BAs in AD progression, offering potential improvements in the accuracy of AD prediction.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Masculino , Humanos , Femenino , Enfermedad de Alzheimer/diagnóstico , Péptidos beta-Amiloides/líquido cefalorraquídeo , Ácidos y Sales Biliares
2.
Sci Rep ; 13(1): 13752, 2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-37612324

RESUMEN

Integration of the omics data, including metabolomics and proteomics, provides a unique opportunity to search for new associations within metabolic disorders, including Alzheimer's disease. Using metabolomics, we have previously profiled oxylipins, endocannabinoids, bile acids, and steroids in 293 CSF and 202 matched plasma samples from AD cases and healthy controls and identified both central and peripheral markers of AD pathology within inflammation-regulating cytochrome p450/soluble epoxide hydrolase pathway. Additionally, using proteomics, we have identified five cerebrospinal fluid protein panels, involved in the regulation of energy metabolism, vasculature, myelin/oligodendrocyte, glia/inflammation, and synapses/neurons, affected in AD, and reflective of AD-related changes in the brain. In the current manuscript, using metabolomics-proteomics data integration, we describe new associations between peripheral and central lipid mediators, with the above-described CSF protein panels. Particularly strong associations were observed between cytochrome p450/soluble epoxide hydrolase metabolites, bile acids, and proteins involved in glycolysis, blood coagulation, and vascular inflammation and the regulators of extracellular matrix. Those metabolic associations were not observed at the gene-co-expression level in the central nervous system. In summary, this manuscript provides new information regarding Alzheimer's disease, linking both central and peripheral metabolism, and illustrates the necessity for the "omics" data integration to uncover associations beyond gene co-expression.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Epóxido Hidrolasas , Proteómica , Sistema Nervioso Central , Metabolismo Energético , Metabolómica , Ácidos y Sales Biliares , Endocannabinoides
3.
Commun Biol ; 5(1): 1074, 2022 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-36209301

RESUMEN

Dysregulation of sphingomyelin and ceramide metabolism have been implicated in Alzheimer's disease. Genome-wide and transcriptome-wide association studies have identified various genes and genetic variants in lipid metabolism that are associated with Alzheimer's disease. However, the molecular mechanisms of sphingomyelin and ceramide disruption remain to be determined. We focus on the sphingolipid pathway and carry out multi-omics analyses to identify central and peripheral metabolic changes in Alzheimer's patients, correlating them to imaging features. Our multi-omics approach is based on (a) 2114 human post-mortem brain transcriptomics to identify differentially expressed genes; (b) in silico metabolic flux analysis on context-specific metabolic networks identified differential reaction fluxes; (c) multimodal neuroimaging analysis on 1576 participants to associate genetic variants in sphingomyelin pathway with Alzheimer's disease pathogenesis; (d) plasma metabolomic and lipidomic analysis to identify associations of lipid species with dysregulation in Alzheimer's; and (e) metabolite genome-wide association studies to define receptors within the pathway as a potential drug target. We validate our hypothesis in amyloidogenic APP/PS1 mice and show prolonged exposure to fingolimod alleviated synaptic plasticity and cognitive impairment in mice. Our integrative multi-omics approach identifies potential targets in the sphingomyelin pathway and suggests modulators of S1P metabolism as possible candidates for Alzheimer's disease treatment.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Animales , Ceramidas , Clorhidrato de Fingolimod , Estudio de Asociación del Genoma Completo , Humanos , Ratones , Esfingolípidos/metabolismo , Esfingolípidos/uso terapéutico , Esfingomielinas/uso terapéutico
4.
Alzheimers Res Ther ; 13(1): 149, 2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34488866

RESUMEN

BACKGROUND: Alzheimer's disease, cardiovascular disease, and other cardiometabolic disorders may share inflammatory origins. Lipid mediators, including oxylipins, endocannabinoids, bile acids, and steroids, regulate inflammation, energy metabolism, and cell proliferation with well-established involvement in cardiometabolic diseases. However, their role in Alzheimer's disease is poorly understood. Here, we describe the analysis of plasma and cerebrospinal fluid lipid mediators in a case-control comparison of ~150 individuals with Alzheimer's disease and ~135 healthy controls, to investigate this knowledge gap. METHODS: Lipid mediators were measured using targeted quantitative mass spectrometry. Data were analyzed using the analysis of covariates, adjusting for sex, age, and ethnicity. Partial least square discriminant analysis identified plasma and cerebrospinal fluid lipid mediator discriminates of Alzheimer's disease. Alzheimer's disease predictive models were constructed using machine learning combined with stepwise logistic regression. RESULTS: In both plasma and cerebrospinal fluid, individuals with Alzheimer's disease had elevated cytochrome P450/soluble epoxide hydrolase pathway components and decreased fatty acid ethanolamides compared to healthy controls. Circulating metabolites of soluble epoxide hydrolase and ethanolamides provide Alzheimer's disease predictors with areas under receiver operator characteristic curves ranging from 0.82 to 0.92 for cerebrospinal fluid and plasma metabolites, respectively. CONCLUSIONS: Previous studies report Alzheimer's disease-associated soluble epoxide hydrolase upregulation in the brain and that endocannabinoid metabolism provides an adaptive response to neuroinflammation. This study supports the involvement of P450-dependent and endocannabinoid metabolism in Alzheimer's disease. The results further suggest that combined pharmacological intervention targeting both metabolic pathways may have therapeutic benefits for Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Epóxido Hidrolasas , Sistema Enzimático del Citocromo P-450 , Ácidos Grasos , Humanos , Oxilipinas
5.
Brain Commun ; 3(3): fcab139, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34396103

RESUMEN

Metabolomics in the Alzheimer's Disease Neuroimaging Initiative cohort provides a powerful tool for mapping biochemical changes in Alzheimer's disease, and a unique opportunity to learn about the association between circulating blood metabolites and brain amyloid-ß deposition in Alzheimer's disease. We examined 140 serum metabolites and their associations with brain amyloid-ß deposition, cognition and conversion from mild cognitive impairment to Alzheimer's disease in the Alzheimer's Disease Neuroimaging Initiative. Processed [18F] Florbetapir PET images were used to perform a voxel-wise statistical analysis of the effect of metabolite levels on amyloid-ß accumulation across the whole brain. We performed a multivariable regression analysis using age, sex, body mass index, apolipoprotein E ε4 status and study phase as covariates. We identified nine metabolites as significantly associated with amyloid-ß deposition after multiple comparison correction. Higher levels of one acylcarnitine (C3; propionylcarnitine) and one biogenic amine (kynurenine) were associated with decreased amyloid-ß accumulation and higher memory scores. However, higher levels of seven phosphatidylcholines (lysoPC a C18:2, PC aa C42:0, PC ae C42:3, PC ae C44:3, PC ae C44:4, PC ae C44:5 and PC ae C44:6) were associated with increased brain amyloid-ß deposition. In addition, higher levels of PC ae C44:4 were significantly associated with lower memory and executive function scores and conversion from mild cognitive impairment to Alzheimer's disease dementia. Our findings suggest that dysregulation of peripheral phosphatidylcholine metabolism is associated with earlier pathological changes noted in Alzheimer's disease as measured by brain amyloid-ß deposition as well as later clinical features including changes in memory and executive functioning. Perturbations in phosphatidylcholine metabolism may point to issues with membrane restructuring leading to the accumulation of amyloid-ß in the brain. Additional studies are needed to explore whether these metabolites play a causal role in the pathogenesis of Alzheimer's disease or if they are biomarkers for systemic changes during preclinical phases of the disease.

6.
Transl Psychiatry ; 11(1): 153, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33654056

RESUMEN

Selective serotonin reuptake inhibitors (SSRIs) are the first-line treatment for major depressive disorder (MDD), yet their mechanisms of action are not fully understood and their therapeutic benefit varies among individuals. We used a targeted metabolomics approach utilizing a panel of 180 metabolites to gain insights into mechanisms of action and response to citalopram/escitalopram. Plasma samples from 136 participants with MDD enrolled into the Mayo Pharmacogenomics Research Network Antidepressant Medication Pharmacogenomic Study (PGRN-AMPS) were profiled at baseline and after 8 weeks of treatment. After treatment, we saw increased levels of short-chain acylcarnitines and decreased levels of medium-chain and long-chain acylcarnitines, suggesting an SSRI effect on ß-oxidation and mitochondrial function. Amines-including arginine, proline, and methionine sulfoxide-were upregulated while serotonin and sarcosine were downregulated, suggesting an SSRI effect on urea cycle, one-carbon metabolism, and serotonin uptake. Eighteen lipids within the phosphatidylcholine (PC aa and ae) classes were upregulated. Changes in several lipid and amine levels correlated with changes in 17-item Hamilton Rating Scale for Depression scores (HRSD17). Differences in metabolic profiles at baseline and post-treatment were noted between participants who remitted (HRSD17 ≤ 7) and those who gained no meaningful benefits (<30% reduction in HRSD17). Remitters exhibited (a) higher baseline levels of C3, C5, alpha-aminoadipic acid, sarcosine, and serotonin; and (b) higher week-8 levels of PC aa C34:1, PC aa C34:2, PC aa C36:2, and PC aa C36:4. These findings suggest that mitochondrial energetics-including acylcarnitine metabolism, transport, and its link to ß-oxidation-and lipid membrane remodeling may play roles in SSRI treatment response.


Asunto(s)
Trastorno Depresivo Mayor , Aminas/uso terapéutico , Antidepresivos/uso terapéutico , Carnitina/análogos & derivados , Citalopram/uso terapéutico , Depresión , Trastorno Depresivo Mayor/tratamiento farmacológico , Humanos , Lípidos , Inhibidores Selectivos de la Recaptación de Serotonina/uso terapéutico
7.
Cell Rep Med ; 1(8): 100138, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33294859

RESUMEN

Increasing evidence suggests Alzheimer's disease (AD) pathophysiology is influenced by primary and secondary bile acids, the end product of cholesterol metabolism. We analyze 2,114 post-mortem brain transcriptomes and identify genes in the alternative bile acid synthesis pathway to be expressed in the brain. A targeted metabolomic analysis of primary and secondary bile acids measured from post-mortem brain samples of 111 individuals supports these results. Our metabolic network analysis suggests that taurine transport, bile acid synthesis, and cholesterol metabolism differ in AD and cognitively normal individuals. We also identify putative transcription factors regulating metabolic genes and influencing altered metabolism in AD. Intriguingly, some bile acids measured in brain tissue cannot be explained by the presence of enzymes responsible for their synthesis, suggesting that they may originate from the gut microbiome and are transported to the brain. These findings motivate further research into bile acid metabolism in AD to elucidate their possible connection to cognitive decline.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Ácidos y Sales Biliares/metabolismo , Redes y Vías Metabólicas/fisiología , Encéfalo/metabolismo , Colesterol/metabolismo , Disfunción Cognitiva/metabolismo , Humanos , Metabolismo de los Lípidos/fisiología , Lipogénesis/fisiología , Metabolómica/métodos , Transcriptoma/fisiología
8.
Sci Rep ; 10(1): 14059, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32820198

RESUMEN

The incidence of Alzheimer's disease (AD) increases with age and is becoming a significant cause of worldwide morbidity and mortality. However, the metabolic perturbation behind the onset of AD remains unclear. In this study, we performed metabolite profiling in both brain (n = 109) and matching serum samples (n = 566) to identify differentially expressed metabolites and metabolic pathways associated with neuropathology and cognitive performance and to identify individuals at high risk of developing cognitive impairment. The abundances of 6 metabolites, glycolithocholate (GLCA), petroselinic acid, linoleic acid, myristic acid, palmitic acid, palmitoleic acid and the deoxycholate/cholate (DCA/CA) ratio, along with the dysregulation scores of 3 metabolic pathways, primary bile acid biosynthesis, fatty acid biosynthesis, and biosynthesis of unsaturated fatty acids showed significant differences across both brain and serum diagnostic groups (P-value < 0.05). Significant associations were observed between the levels of differential metabolites/pathways and cognitive performance, neurofibrillary tangles, and neuritic plaque burden. Metabolites abundances and personalized metabolic pathways scores were used to derive machine learning models, respectively, that could be used to differentiate cognitively impaired persons from those without cognitive impairment (median area under the receiver operating characteristic curve (AUC) = 0.772 for the metabolite level model; median AUC = 0.731 for the pathway level model). Utilizing these two models on the entire baseline control group, we identified those who experienced cognitive decline in the later years (AUC = 0.804, sensitivity = 0.722, specificity = 0.749 for the metabolite level model; AUC = 0.778, sensitivity = 0.633, specificity = 0.825 for the pathway level model) and demonstrated their pre-AD onset prediction potentials. Our study provides a proof-of-concept that it is possible to discriminate antecedent cognitive impairment in older adults before the onset of overt clinical symptoms using metabolomics. Our findings, if validated in future studies, could enable the earlier detection and intervention of cognitive impairment that may halt its progression.


Asunto(s)
Trastornos del Conocimiento/sangre , Metabolómica , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/sangre , Trastornos del Conocimiento/diagnóstico , Trastornos del Conocimiento/psicología , Progresión de la Enfermedad , Femenino , Humanos , Estudios Longitudinales , Masculino , Pruebas Neuropsicológicas , Prueba de Estudio Conceptual
9.
Nat Commun ; 11(1): 1148, 2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-32123170

RESUMEN

Late-onset Alzheimer's disease (AD) can, in part, be considered a metabolic disease. Besides age, female sex and APOE ε4 genotype represent strong risk factors for AD that also give rise to large metabolic differences. We systematically investigated group-specific metabolic alterations by conducting stratified association analyses of 139 serum metabolites in 1,517 individuals from the AD Neuroimaging Initiative with AD biomarkers. We observed substantial sex differences in effects of 15 metabolites with partially overlapping differences for APOE ε4 status groups. Several group-specific metabolic alterations were not observed in unstratified analyses using sex and APOE ε4 as covariates. Combined stratification revealed further subgroup-specific metabolic effects limited to APOE ε4+ females. The observed metabolic alterations suggest that females experience greater impairment of mitochondrial energy production than males. Dissecting metabolic heterogeneity in AD pathogenesis can therefore enable grading the biomedical relevance for specific pathways within specific subgroups, guiding the way to personalized medicine.


Asunto(s)
Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/genética , Apolipoproteínas E/genética , Sangre/metabolismo , Metaboloma/genética , Anciano , Enfermedad de Alzheimer/diagnóstico por imagen , Biomarcadores/sangre , Biomarcadores/líquido cefalorraquídeo , Estudios de Cohortes , Femenino , Genotipo , Humanos , Masculino , Mitocondrias/genética , Mitocondrias/metabolismo , Tomografía de Emisión de Positrones , Factores Sexuales
10.
J Affect Disord ; 264: 90-97, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-32056779

RESUMEN

BACKGROUND: Acylcarnitines have important functions in mitochondrial energetics and ß-oxidation, and have been implicated to play a significant role in metabolic functions of the brain. This retrospective study examined whether plasma acylcarnitine profiles can help biochemically distinguish the three phenotypic subtypes of major depressive disorder (MDD): core depression (CD+), anxious depression (ANX+), and neurovegetative symptoms of melancholia (NVSM+). METHODS: Depressed outpatients (n = 240) from the Mayo Clinic Pharmacogenomics Research Network were treated with citalopram or escitalopram for eight weeks. Plasma samples collected at baseline and after eight weeks of treatment with citalopram or escitalopram were profiled for short-, medium- and long-chain acylcarnitine levels using AbsoluteIDQ®p180-Kit and LC-MS. Linear mixed effects models were used to examine whether acylcarnitine levels discriminated the clinical phenotypes at baseline or eight weeks post-treatment, and whether temporal changes in acylcarnitine profiles differed between groups. RESULTS: Compared to ANX+, CD+ and NVSM+ had significantly lower concentrations of short- and long-chain acylcarnitines at both baseline and week 8. In NVSM+, the medium- and long-chain acylcarnitines were also significantly lower in NVSM+ compared to ANX+. Short-chain acylcarnitine levels increased significantly from baseline to week 8 in CD+ and ANX+, whereas medium- and long-chain acylcarnitines significantly decreased in CD+ and NVSM+. CONCLUSIONS: In depressed patients treated with SSRIs, ß-oxidation and mitochondrial energetics as evaluated by levels and changes in acylcarnitines may provide the biochemical basis of the clinical heterogeneity of MDD, especially when combined with clinical characteristics.


Asunto(s)
Trastorno Depresivo Mayor , Carnitina/análogos & derivados , Trastorno Depresivo Mayor/tratamiento farmacológico , Humanos , Fenotipo , Estudios Retrospectivos
11.
Sci Data ; 6(1): 212, 2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31624257

RESUMEN

Alzheimer's disease (AD) is the most common cause of dementia. The mechanism of disease development and progression is not well understood, but increasing evidence suggests multifactorial etiology, with a number of genetic, environmental, and aging-related factors. There is a growing body of evidence that metabolic defects may contribute to this complex disease. To interrogate the relationship between system level metabolites and disease susceptibility and progression, the AD Metabolomics Consortium (ADMC) in partnership with AD Neuroimaging Initiative (ADNI) is creating a comprehensive biochemical database for patients in the ADNI1 cohort. We used the Biocrates Bile Acids platform to evaluate the association of metabolic levels with disease risk and progression. We detail the quantitative metabolomics data generated on the baseline samples from ADNI1 and ADNIGO/2 (370 cognitively normal, 887 mild cognitive impairment, and 305 AD). Similar to our previous reports on ADNI1, we present the tools for data quality control and initial analysis. This data descriptor represents the third in a series of comprehensive metabolomics datasets from the ADMC on the ADNI.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Ácidos y Sales Biliares/sangre , Metabolómica , Anciano , Anciano de 80 o más Años , Progresión de la Enfermedad , Femenino , Humanos , Masculino
12.
Front Neurosci ; 13: 926, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31572108

RESUMEN

Major depressive disorder (MDD) is a common and disabling syndrome with multiple etiologies that is defined by clinically elicited signs and symptoms. In hopes of developing a list of candidate biological measures that reflect and relate closely to the severity of depressive symptoms, so-called "state-dependent" biomarkers of depression, this pilot study explored the biochemical underpinnings of treatment response to cognitive behavior therapy (CBT) in medication-free MDD outpatients. Plasma samples were collected at baseline and week 12 from a subset of MDD patients (N = 26) who completed a course of CBT treatment as part of the Predictors of Remission in Depression to Individual and Combined Treatments (PReDICT) study. Targeted metabolomic profiling using the AbsoluteIDQ® p180 Kit and LC-MS identified eight "co-expressed" metabolomic modules. Of these eight, three were significantly associated with change in depressive symptoms over the course of the 12-weeks. Metabolites found to be most strongly correlated with change in depressive symptoms were branched chain amino acids, acylcarnitines, methionine sulfoxide, and α-aminoadipic acid (negative correlations with symptom change) as well as several lipids, particularly the phosphatidlylcholines (positive correlation). These results implicate disturbed bioenergetics as an important state marker in the pathobiology of MDD. Exploratory analyses contrasting remitters to CBT versus those who failed the treatment further suggest these metabolites may serve as mediators of recovery during CBT treatment. Larger studies examining metabolomic change patterns in patients treated with pharmacotherapy or psychotherapy will be necessary to elucidate the biological underpinnings of MDD and the -specific biologies of treatment response.

13.
JAMA Netw Open ; 2(7): e197978, 2019 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-31365104

RESUMEN

Importance: Increasing evidence suggests an important role of liver function in the pathophysiology of Alzheimer disease (AD). The liver is a major metabolic hub; therefore, investigating the association of liver function with AD, cognition, neuroimaging, and CSF biomarkers would improve the understanding of the role of metabolic dysfunction in AD. Objective: To examine whether liver function markers are associated with cognitive dysfunction and the "A/T/N" (amyloid, tau, and neurodegeneration) biomarkers for AD. Design, Setting, and Participants: In this cohort study, serum-based liver function markers were measured from September 1, 2005, to August 31, 2013, in 1581 AD Neuroimaging Initiative participants along with cognitive measures, cerebrospinal fluid (CSF) biomarkers, brain atrophy, brain glucose metabolism, and amyloid-ß accumulation. Associations of liver function markers with AD-associated clinical and A/T/N biomarkers were assessed using generalized linear models adjusted for confounding variables and multiple comparisons. Statistical analysis was performed from November 1, 2017, to February 28, 2019. Exposures: Five serum-based liver function markers (total bilirubin, albumin, alkaline phosphatase, alanine aminotransferase, and aspartate aminotransferase) from AD Neuroimaging Initiative participants were used as exposure variables. Main Outcomes and Measures: Primary outcomes included diagnosis of AD, composite scores for executive functioning and memory, CSF biomarkers, atrophy measured by magnetic resonance imaging, brain glucose metabolism measured by fludeoxyglucose F 18 (18F) positron emission tomography, and amyloid-ß accumulation measured by [18F]florbetapir positron emission tomography. Results: Participants in the AD Neuroimaging Initiative (n = 1581; 697 women and 884 men; mean [SD] age, 73.4 [7.2] years) included 407 cognitively normal older adults, 20 with significant memory concern, 298 with early mild cognitive impairment, 544 with late mild cognitive impairment, and 312 with AD. An elevated aspartate aminotransferase (AST) to alanine aminotransferase (ALT) ratio and lower levels of ALT were associated with AD diagnosis (AST to ALT ratio: odds ratio, 7.932 [95% CI, 1.673-37.617]; P = .03; ALT: odds ratio, 0.133 [95% CI, 0.042-0.422]; P = .004) and poor cognitive performance (AST to ALT ratio: ß [SE], -0.465 [0.180]; P = .02 for memory composite score; ß [SE], -0.679 [0.215]; P = .006 for executive function composite score; ALT: ß [SE], 0.397 [0.128]; P = .006 for memory composite score; ß [SE], 0.637 [0.152]; P < .001 for executive function composite score). Increased AST to ALT ratio values were associated with lower CSF amyloid-ß 1-42 levels (ß [SE], -0.170 [0.061]; P = .04) and increased amyloid-ß deposition (amyloid biomarkers), higher CSF phosphorylated tau181 (ß [SE], 0.175 [0.055]; P = .02) (tau biomarkers) and higher CSF total tau levels (ß [SE], 0.160 [0.049]; P = .02) and reduced brain glucose metabolism (ß [SE], -0.123 [0.042]; P = .03) (neurodegeneration biomarkers). Lower levels of ALT were associated with increased amyloid-ß deposition (amyloid biomarkers), and reduced brain glucose metabolism (ß [SE], 0.096 [0.030]; P = .02) and greater atrophy (neurodegeneration biomarkers). Conclusions and Relevance: Consistent associations of serum-based liver function markers with cognitive performance and A/T/N biomarkers for AD highlight the involvement of metabolic disturbances in the pathophysiology of AD. Further studies are needed to determine if these associations represent a causative or secondary role. Liver enzyme involvement in AD opens avenues for novel diagnostics and therapeutics.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico , Disfunción Cognitiva/sangre , Pruebas de Función Hepática/estadística & datos numéricos , Neuroimagen/estadística & datos numéricos , Pruebas Neuropsicológicas/estadística & datos numéricos , Anciano , Alanina Transaminasa/sangre , Fosfatasa Alcalina/sangre , Enfermedad de Alzheimer/etiología , Aspartato Aminotransferasas/sangre , Bilirrubina/sangre , Biomarcadores/sangre , Biomarcadores/líquido cefalorraquídeo , Cognición , Disfunción Cognitiva/complicaciones , Estudios de Cohortes , Femenino , Fluorodesoxiglucosa F18 , Humanos , Pruebas de Función Hepática/métodos , Imagen por Resonancia Magnética , Masculino , Neuroimagen/métodos , Tomografía de Emisión de Positrones , Reproducibilidad de los Resultados , Albúmina Sérica/análisis
14.
Transl Psychiatry ; 9(1): 173, 2019 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-31273200

RESUMEN

Metabolomics provides valuable tools for the study of drug effects, unraveling the mechanism of action and variation in response due to treatment. In this study we used electrochemistry-based targeted metabolomics to gain insights into the mechanisms of action of escitalopram/citalopram focusing on a set of 31 metabolites from neurotransmitter-related pathways. Overall, 290 unipolar patients with major depressive disorder were profiled at baseline, after 4 and 8 weeks of drug treatment. The 17-item Hamilton Depression Rating Scale (HRSD17) scores gauged depressive symptom severity. More significant metabolic changes were found after 8 weeks than 4 weeks post baseline. Within the tryptophan pathway, we noted significant reductions in serotonin (5HT) and increases in indoles that are known to be influenced by human gut microbial cometabolism. 5HT, 5-hydroxyindoleacetate (5HIAA), and the ratio of 5HIAA/5HT showed significant correlations to temporal changes in HRSD17 scores. In the tyrosine pathway, changes were observed in the end products of the catecholamines, 3-methoxy-4-hydroxyphenylethyleneglycol and vinylmandelic acid. Furthermore, two phenolic acids, 4-hydroxyphenylacetic acid and 4-hydroxybenzoic acid, produced through noncanconical pathways, were increased with drug exposure. In the purine pathway, significant reductions in hypoxanthine and xanthine levels were observed. Examination of metabolite interactions through differential partial correlation networks revealed changes in guanosine-homogentisic acid and methionine-tyrosine interactions associated with HRSD17. Genetic association studies using the ratios of these interacting pairs of metabolites highlighted two genetic loci harboring genes previously linked to depression, neurotransmission, or neurodegeneration. Overall, exposure to escitalopram/citalopram results in shifts in metabolism through noncanonical pathways, which suggest possible roles for the gut microbiome, oxidative stress, and inflammation-related mechanisms.


Asunto(s)
Citalopram/farmacología , Trastorno Depresivo Mayor/tratamiento farmacológico , Metaboloma/efectos de los fármacos , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Transducción de Señal/efectos de los fármacos , Adulto , Trastorno Depresivo Mayor/metabolismo , Trastorno Depresivo Mayor/fisiopatología , Femenino , Estudios de Seguimiento , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Masculino , Metabolómica , Persona de Mediana Edad , Índice de Severidad de la Enfermedad
15.
Alzheimers Dement ; 15(1): 76-92, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30337151

RESUMEN

INTRODUCTION: Increasing evidence suggests a role for the gut microbiome in central nervous system disorders and a specific role for the gut-brain axis in neurodegeneration. Bile acids (BAs), products of cholesterol metabolism and clearance, are produced in the liver and are further metabolized by gut bacteria. They have major regulatory and signaling functions and seem dysregulated in Alzheimer's disease (AD). METHODS: Serum levels of 15 primary and secondary BAs and their conjugated forms were measured in 1464 subjects including 370 cognitively normal older adults, 284 with early mild cognitive impairment, 505 with late mild cognitive impairment, and 305 AD cases enrolled in the AD Neuroimaging Initiative. We assessed associations of BA profiles including selected ratios with diagnosis, cognition, and AD-related genetic variants, adjusting for confounders and multiple testing. RESULTS: In AD compared to cognitively normal older adults, we observed significantly lower serum concentrations of a primary BA (cholic acid [CA]) and increased levels of the bacterially produced, secondary BA, deoxycholic acid, and its glycine and taurine conjugated forms. An increased ratio of deoxycholic acid:CA, which reflects 7α-dehydroxylation of CA by gut bacteria, strongly associated with cognitive decline, a finding replicated in serum and brain samples in the Rush Religious Orders and Memory and Aging Project. Several genetic variants in immune response-related genes implicated in AD showed associations with BA profiles. DISCUSSION: We report for the first time an association between altered BA profile, genetic variants implicated in AD, and cognitive changes in disease using a large multicenter study. These findings warrant further investigation of gut dysbiosis and possible role of gut-liver-brain axis in the pathogenesis of AD.


Asunto(s)
Enfermedad de Alzheimer , Ácidos y Sales Biliares/metabolismo , Disfunción Cognitiva/metabolismo , Microbioma Gastrointestinal , Anciano , Enfermedad de Alzheimer/microbiología , Enfermedad de Alzheimer/fisiopatología , Ácidos y Sales Biliares/sangre , Disbiosis , Femenino , Humanos , Hígado/metabolismo , Masculino , Metaboloma
16.
Alzheimers Dement ; 15(2): 232-244, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30337152

RESUMEN

INTRODUCTION: Bile acids (BAs) are the end products of cholesterol metabolism produced by human and gut microbiome co-metabolism. Recent evidence suggests gut microbiota influence pathological features of Alzheimer's disease (AD) including neuroinflammation and amyloid-ß deposition. METHOD: Serum levels of 20 primary and secondary BA metabolites from the AD Neuroimaging Initiative (n = 1562) were measured using targeted metabolomic profiling. We assessed the association of BAs with the "A/T/N" (amyloid, tau, and neurodegeneration) biomarkers for AD: cerebrospinal fluid (CSF) biomarkers, atrophy (magnetic resonance imaging), and brain glucose metabolism ([18F]FDG PET). RESULTS: Of 23 BAs and relevant calculated ratios after quality control procedures, three BA signatures were associated with CSF Aß1-42 ("A") and three with CSF p-tau181 ("T") (corrected P < .05). Furthermore, three, twelve, and fourteen BA signatures were associated with CSF t-tau, glucose metabolism, and atrophy ("N"), respectively (corrected P < .05). DISCUSSION: This is the first study to show serum-based BA metabolites are associated with "A/T/N" AD biomarkers, providing further support for a role of BA pathways in AD pathophysiology. Prospective clinical observations and validation in model systems are needed to assess causality and specific mechanisms underlying this association.


Asunto(s)
Enfermedad de Alzheimer/patología , Ácidos y Sales Biliares , Biomarcadores/líquido cefalorraquídeo , Disfunción Cognitiva/patología , Neuroimagen , Anciano , Enfermedad de Alzheimer/líquido cefalorraquídeo , Péptidos beta-Amiloides/líquido cefalorraquídeo , Ácidos y Sales Biliares/sangre , Ácidos y Sales Biliares/metabolismo , Disfunción Cognitiva/líquido cefalorraquídeo , Femenino , Fluorodesoxiglucosa F18/metabolismo , Humanos , Imagen por Resonancia Magnética , Masculino , Tomografía de Emisión de Positrones , Estudios Prospectivos , Proteínas tau/líquido cefalorraquídeo
17.
Sci Data ; 5: 180263, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30457571

RESUMEN

Alzheimer's disease (AD) is a major public health priority with a large socioeconomic burden and complex etiology. The Alzheimer Disease Metabolomics Consortium (ADMC) and the Alzheimer Disease Neuroimaging Initiative (ADNI) aim to gain new biological insights in the disease etiology. We report here an untargeted lipidomics of serum specimens of 806 subjects within the ADNI1 cohort (188 AD, 392 mild cognitive impairment and 226 cognitively normal subjects) along with 83 quality control samples. Lipids were detected and measured using an ultra-high-performance liquid chromatography quadruple/time-of-flight mass spectrometry (UHPLC-QTOF MS) instrument operated in both negative and positive electrospray ionization modes. The dataset includes a total 513 unique lipid species out of which 341 are known lipids. For over 95% of the detected lipids, a relative standard deviation of better than 20% was achieved in the quality control samples, indicating high technical reproducibility. Association modeling of this dataset and available clinical, metabolomics and drug-use data will provide novel insights into the AD etiology. These datasets are available at the ADNI repository at http://adni.loni.usc.edu/.


Asunto(s)
Enfermedad de Alzheimer , Lípidos/análisis , Lípidos/sangre , Metabolómica , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/fisiopatología , Disfunción Cognitiva , Estudios de Cohortes , Humanos , Espectrometría de Masas , Metabolómica/métodos , Metabolómica/normas , Neuroimagen
18.
Sci Data ; 4: 170140, 2017 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-29039849

RESUMEN

Alzheimer's disease (AD) is the most common neurodegenerative disease presenting major health and economic challenges that continue to grow. Mechanisms of disease are poorly understood but significant data point to metabolic defects that might contribute to disease pathogenesis. The Alzheimer Disease Metabolomics Consortium (ADMC) in partnership with Alzheimer Disease Neuroimaging Initiative (ADNI) is creating a comprehensive biochemical database for AD. Using targeted and non- targeted metabolomics and lipidomics platforms we are mapping metabolic pathway and network failures across the trajectory of disease. In this report we present quantitative metabolomics data generated on serum from 199 control, 356 mild cognitive impairment and 175 AD subjects enrolled in ADNI1 using AbsoluteIDQ-p180 platform, along with the pipeline for data preprocessing and medication classification for confound correction. The dataset presented here is the first of eight metabolomics datasets being generated for broad biochemical investigation of the AD metabolome. We expect that these collective metabolomics datasets will provide valuable resources for researchers to identify novel molecular mechanisms contributing to AD pathogenesis and disease phenotypes.


Asunto(s)
Enfermedad de Alzheimer , Metabolómica , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Disfunción Cognitiva , Estudios de Cohortes , Humanos , Neuroimagen
19.
Alzheimers Dement ; 13(9): 965-984, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28341160

RESUMEN

INTRODUCTION: The Alzheimer's Disease Research Summits of 2012 and 2015 incorporated experts from academia, industry, and nonprofit organizations to develop new research directions to transform our understanding of Alzheimer's disease (AD) and propel the development of critically needed therapies. In response to their recommendations, big data at multiple levels are being generated and integrated to study network failures in disease. We used metabolomics as a global biochemical approach to identify peripheral metabolic changes in AD patients and correlate them to cerebrospinal fluid pathology markers, imaging features, and cognitive performance. METHODS: Fasting serum samples from the Alzheimer's Disease Neuroimaging Initiative (199 control, 356 mild cognitive impairment, and 175 AD participants) were analyzed using the AbsoluteIDQ-p180 kit. Performance was validated in blinded replicates, and values were medication adjusted. RESULTS: Multivariable-adjusted analyses showed that sphingomyelins and ether-containing phosphatidylcholines were altered in preclinical biomarker-defined AD stages, whereas acylcarnitines and several amines, including the branched-chain amino acid valine and α-aminoadipic acid, changed in symptomatic stages. Several of the analytes showed consistent associations in the Rotterdam, Erasmus Rucphen Family, and Indiana Memory and Aging Studies. Partial correlation networks constructed for Aß1-42, tau, imaging, and cognitive changes provided initial biochemical insights for disease-related processes. Coexpression networks interconnected key metabolic effectors of disease. DISCUSSION: Metabolomics identified key disease-related metabolic changes and disease-progression-related changes. Defining metabolic changes during AD disease trajectory and its relationship to clinical phenotypes provides a powerful roadmap for drug and biomarker discovery.


Asunto(s)
Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/complicaciones , Enfermedades Metabólicas/etiología , Redes y Vías Metabólicas/fisiología , Anciano , Anciano de 80 o más Años , Envejecimiento/sangre , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/diagnóstico por imagen , Aminoácidos/sangre , Péptidos beta-Amiloides/metabolismo , Compuestos de Anilina/metabolismo , Disfunción Cognitiva/sangre , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/etiología , Estudios de Cohortes , Estudios Transversales , Ayuno , Femenino , Humanos , Masculino , Enfermedades Metabólicas/sangre , Enfermedades Metabólicas/líquido cefalorraquídeo , Enfermedades Metabólicas/diagnóstico por imagen , Metabolómica/métodos , Fragmentos de Péptidos/metabolismo , Fosfatidilcolinas/sangre , Fosfatidilcolinas/metabolismo , Esfingomielinas/sangre , Tiazoles/metabolismo , Proteínas tau/líquido cefalorraquídeo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA