Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(16): 17956-17965, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38680344

RESUMEN

This study delves into the potential advantage of utilizing crab shells as sustainable solid adsorbents for CO2 capture, offering an environmentally friendly alternative to conventional porous adsorbents, such as zeolites, silicas, metal-organic frameworks (MOFs), and porous carbons. The investigation focuses on crab shell waste, which exhibits inherent natural porosity and N-bearing groups, making them promising candidates for CO2 physisorption and chemisorption applications. Selective deproteinization and demineralization treatments were used to enhance textural properties while preserving the natural porous structure of the crab shells. The impact of deproteinization and demineralization treatments on CO2 adsorption and speciation at the atomic scale, via solid-state NMR, and correlated findings with textural properties and biomass composition were investigated. The best-performing sample exhibits a surface area of 36 m2/g and a CO2 adsorption capacity of 0.31 mmol/g at 1 bar and 298 K, representing gains of ∼3.5 and 2, respectively, compared to the pristine crab shell. These results underline the potential of fishing industry wastes as a cost-effective, renewable, and eco-friendly source to produce functional porous adsorbents.

2.
Chem Commun (Camb) ; 60(30): 4015-4035, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38525497

RESUMEN

This comprehensive review describes recent advancements in the use of solid-state NMR-assisted methods and computational modeling strategies to unravel gas adsorption mechanisms and CO2 speciation in porous CO2-adsorbent silica materials at the atomic scale. This work provides new perspectives for the innovative modifications of these materials rendering them more amenable to the use of advanced NMR methods.

3.
Mol Pharm ; 18(3): 898-914, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33461296

RESUMEN

Aiming to evaluate how the release profile of naproxen (nap) is influenced by its physical state, molecular mobility, and distribution in the host, this pharmaceutical drug was loaded in three different mesoporous silicas differing in their architecture and surface composition. Unmodified and partially silylated MCM-41 matrices, respectively MCM-41 and MCM-41sil, and a biphenylene-bridged periodic mesoporous organic matrix, PMOBph, were synthetized and used as drug carriers, having comparable pore sizes (∼3 nm) and loading percentages (∼30% w/w). The loaded guest was investigated by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, powder X-ray diffraction (XRD), differential scanning calorimetry (DSC), and dielectric relaxation spectroscopy (DRS). DSC and XRD confirmed amorphization of a nap fraction incorporated inside the pores. A narrower glass transition was detected for PMOBph_nap, taken as an indication of the impact of host ordering, which also hinders the guest molecular mobility inside the pores as probed by DRS. While the PMOBph matrix is highly hydrophobic, the unmodified MCM-41 readily adsorbs water, accelerating the nap relaxation rate in the respective composite. In the dehydrated state, the faster dynamics was found for the silylated matrix since guest-host hydrogen bond interactions were inhibited to some extent by methylation. Nevertheless, in all the prepared composites, bulk-like crystalline drug deposits outside pores in a greater extent in PMOBph_nap. The DRS measurements analyzed in terms of conductivity show that, upon melting, nap easily migrates into pores in MCM-41-based composites, while it stays in the outer surface in the ordered PMOBph, determining a faster nap delivery from the latter matrix. On the other side, the mobility enhancement in the hydrated state controls the drug delivery in the unmodified MCM-41 matrix vs the silylated one. Therefore, DRS proved to be a suitable technique to disclose the influence of the ordering of the host surface and its chemical modification on the guest behavior, and, through conductivity depletion, it provides a mean to monitor the guest entrance inside the pores, easily followed even by untrained spectroscopists.


Asunto(s)
Naproxeno/química , Dióxido de Silicio/química , Adsorción/efectos de los fármacos , Rastreo Diferencial de Calorimetría , Cristalización/métodos , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos/métodos , Interacciones Hidrofóbicas e Hidrofílicas/efectos de los fármacos , Tamaño de la Partícula , Porosidad , Solubilidad/efectos de los fármacos , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Agua/química , Difracción de Rayos X/métodos
4.
Chemosphere ; 252: 126563, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32443264

RESUMEN

Climate change is leading to a gradual increase in the ocean temperature, which can cause physiological and biochemical impairments in aquatic organisms. Along with the environmental changes, the presence of emerging pollutants such as titanium dioxide (TiO2) in marine coastal systems has also been a topic of concern, especially considering the interactive effects that both factors may present to inhabiting organisms. In the present study, it has been assessed the effects of the presence in water of particles of rutile, the most common polymorph of TiO2, in Mytilus galloprovincialis, under actual and predicted warming conditions. Organisms were exposed to different concentrations of rutile (0, 5, 50, 100 µg/L) at control (18 ± 1.0 °C) and increased (22 ± 1.0 °C) temperatures. Histopathological and biochemical changes were evaluated in mussels after 28 days of exposure. Histopathological examination revealed similar alterations on mussels' gills and digestive glands with increasing rutile concentrations at both temperatures. Biochemical markers showed that contaminated mussels have an unchanged metabolic capacity at 18 °C, which increased at 22 °C. Although antioxidant defences were activated in contaminated organisms at 22 °C, cellular damage was still observed. Overall, our findings showed that histopathological impacts occurred after rutile exposure regardless of the temperature, while biochemical alterations were only significantly noticeable when temperature was enhanced to 22 °C. Thus, this study demonstrated that temperature rise may significantly enhance the sensitivity of bivalves towards emerging pollutants.


Asunto(s)
Mytilus/fisiología , Titanio/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Cambio Climático , Branquias/metabolismo , Mytilus/metabolismo , Estrés Oxidativo/efectos de los fármacos , Temperatura , Contaminantes Químicos del Agua/análisis
5.
Sci Total Environ ; 719: 134886, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-31837882

RESUMEN

Titanium dioxide (TiO2) particles have been widely used in various industrial applications and consumer products. Due to their large production and use, they will eventually enter into aquatic environments. Once in the aquatic environment TiO2 particles may interact with the organisms and induce toxic effects. Since the most common crystallographic forms of TiO2 are rutile and anatase, the present study evaluated the effect of these two forms of TiO2 particles in Mytilus galloprovincialis. For this, mussels were exposed to different concentrations of rutile and anatase particles (0, 5, 50, 100 µg/L) for twenty-eight days. Ti concentrations, histopathological alterations and biochemical effects were evaluated. Similar Ti concentrations were found in mussels exposed to rutile and anatase, with the highest values in mussels exposed to the highest exposure concentration. Histopathological results demonstrated that both forms of TiO2 induced alterations on gills and digestive glands along the increasing exposure gradient. Biochemical markers showed that mussels exposed to rutile maintained their metabolic capacity (assessed by the activity of the Electron Transport System, ETS), while anatase increased the metabolism of mussels. Mussels exposed to rutile increased their detoxifying defences which, due to the low tested concentrations, were sufficient to avoid cellular damage. On the other hand, mussels exposed to anatase suffered cellular damages despite the increase of the antioxidant defences which may be related to the high ETS activity. Both rutile and anatase particles were toxic to M. galloprovincialis, being the highest oxidative stress exerted by the crystalline form anatase.


Asunto(s)
Mytilus , Animales , Estrés Oxidativo , Titanio , Contaminantes Químicos del Agua
6.
Phys Chem Chem Phys ; 20(24): 16686-16694, 2018 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-29877547

RESUMEN

Periodic mesoporous organosilicas (PMOs) were suggested as potential adsorbents for CO2/CH4 separation because of their large affinities towards CO2 and low interaction with CH4. Herewith, we present a comprehensive computational study on the binding properties of flue gas species with the pore walls of periodic mesoporous phenylene-silica (Ph-PMO) for understanding the possible impact of other gaseous species in the CO2/CH4 separation. The calculations considered three exchange-correlation functionals (PBE, PBE-D2 and M06-2X) based on the density functional theory and the walls of the periodic mesoporous phenylene-silica were modelled within the cluster model approach. The components of the flue gas considered were the diatomic CO, H2, N2, O2 and NO molecules, the triatomic CO2, H2O, H2S and SO2 species, the tetratomic SO3 and NH3 gases and the pentatomic CH4 molecule. The calculated data demonstrate that the presence of H2O, SO2, NH3, H2S and SO3 is a significant threat to CO2 capture by Ph-PMO and suggest that the Ph-PMO material would present high selectivity for CO2 over CH4, CO, H2 or N2 adsorption. The adsorption behaviour of flue gas components in Ph-PMO can be directly related to the experimental proton affinities, basicities or even the polarizabilities of the gaseous molecules.

7.
Dalton Trans ; 42(16): 5631-4, 2013 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-23508286

RESUMEN

N-alkylation reaction of amine functionalized phenylene moieties in crystal-like mesoporous silica is successfully achieved with about 87% of conversion in two reaction cycles. A potassium iodide catalyzed method commonly used for the selective N-monoalkylation of aniline is adapted and optimized to the N-monoalkylation reactions of the amine functionalized periodic mesoporous phenylene-silica (NH2-PMO) under microwave irradiation with preservation of the ordered mesostructure and of the crystal-like molecular scale periodicity of the material. This functionalization opens an avenue for the preparation of new materials with different amino-alkyl groups specially designed for a desired application, namely on the adsorption or catalytic fields.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...