RESUMEN
Lactococcus lactis is a lactic acid bacterium used in the production of many fermented foods, such as dairy products. Here, we report the genome sequence of L. lactis subsp. lactis TOMSC161, isolated from nonscalded curd pressed cheese. This genome sequence provides information in relation to dairy environment adaptation.
RESUMEN
We have implemented a genome annotation system for prokaryotes called AGMIAL. Our approach embodies a number of key principles. First, expert manual annotators are seen as a critical component of the overall system; user interfaces were cyclically refined to satisfy their needs. Second, the overall process should be orchestrated in terms of a global annotation strategy; this facilitates coordination between a team of annotators and automatic data analysis. Third, the annotation strategy should allow progressive and incremental annotation from a time when only a few draft contigs are available, to when a final finished assembly is produced. The overall architecture employed is modular and extensible, being based on the W3 standard Web services framework. Specialized modules interact with two independent core modules that are used to annotate, respectively, genomic and protein sequences. AGMIAL is currently being used by several INRA laboratories to analyze genomes of bacteria relevant to the food-processing industry, and is distributed under an open source license.
Asunto(s)
Genoma Bacteriano , Genómica , Programas Informáticos , Proteínas Bacterianas/genética , Biología Computacional , Genoma Arqueal , Internet , Interfaz Usuario-ComputadorRESUMEN
Lactobacillus delbrueckii ssp. bulgaricus (L. bulgaricus) is a representative of the group of lactic acid-producing bacteria, mainly known for its worldwide application in yogurt production. The genome sequence of this bacterium has been determined and shows the signs of ongoing specialization, with a substantial number of pseudogenes and incomplete metabolic pathways and relatively few regulatory functions. Several unique features of the L. bulgaricus genome support the hypothesis that the genome is in a phase of rapid evolution. (i) Exceptionally high numbers of rRNA and tRNA genes with regard to genome size may indicate that the L. bulgaricus genome has known a recent phase of important size reduction, in agreement with the observed high frequency of gene inactivation and elimination; (ii) a much higher GC content at codon position 3 than expected on the basis of the overall GC content suggests that the composition of the genome is evolving toward a higher GC content; and (iii) the presence of a 47.5-kbp inverted repeat in the replication termination region, an extremely rare feature in bacterial genomes, may be interpreted as a transient stage in genome evolution. The results indicate the adaptation of L. bulgaricus from a plant-associated habitat to the stable protein and lactose-rich milk environment through the loss of superfluous functions and protocooperation with Streptococcus thermophilus.
Asunto(s)
Secuencia de Bases , Evolución Molecular , Genoma Bacteriano , Lactobacillus delbrueckii/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Metabolismo de los Hidratos de Carbono , Secuencias Repetitivas Esparcidas , Lactobacillus delbrueckii/metabolismo , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Streptococcus thermophilus/metabolismo , Sintenía , Yogur/microbiologíaRESUMEN
The granulocyte-macrophage colony stimulating factor (GM-CSF), a water-soluble cytokine, was encapsulated in poly(ethylene carbonate) microspheres (MS) by a double emulsion w(1)/o/w(2) solvent evaporation method. Poly(ethylene carbonate) is a new polymer of high molecular weight (MW) and forms polymer matrices that are exclusively surface bioerodible. In the frame of this study, the influence of the polymer molecular weight and the polymer concentration in the organic phase on the physico-chemical characteristics of the microspheres were investigated. Ninety percent of the microspheres had a diameter ranging between 4 and 136 microm, with a mean value of 30 microm. The encapsulation ratios ranged from 2.22 to 2.51% (w/w) depending on the molecular weight of the polymer corresponding to an encapsulation efficiency of 70 to 100%, respectively. Independent of the polymer molecular weight used, the in vitro drug release was very low, ranging from 5.61 to less than 1% of the total encapsulated GM-CSF amount. Scanning electron microscopy (SEM) analysis showed microparticles with spherical shapes and smooth surfaces containing a few small globules. The inner structure of the microspheres appeared to consist of a polymeric matrix surrounding numerous globules. These globules have different sizes, shape and distribution in the polymeric matrix, depending on the concentration of the polymer solution and on the polymer molecular weight. In addition, it was demonstrated that the GM-CSF lowered the interfacial tension between the GM-CSF aqueous solution and the methylene chloride organic phase. The active critical concentration was as low as 0.008 mg/ml. It was therefore suggested that this particular behavior contributed to the stabilization of the primary emulsion during the formation of the microspheres, leading to rather high encapsulation efficiency.