Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38948694

RESUMEN

Subtle changes in gene expression direct cells to distinct cellular states. Identifying and controlling dose-dependent transgenes requires tools for precisely titrating expression. To this end, we developed a framework called DIAL for building editable promoters that allows for fine-scale, heritable changes in transgene expression. Using DIAL, we increase expression by recombinase-mediated excision of spacers between the binding sites of a synthetic zinc-finger transcription factor and the core promoter. By nesting varying numbers and lengths of spacers, DIAL generates a tunable range of unimodal setpoints from a single promoter construct. Through small-molecule control of transcription factors and recombinases, DIAL supports temporally defined, user-guided control of transgene expression. Integration of DIAL promoters into lentivirus allows for efficient delivery to primary cells. As promoter editing generates stable states, DIAL setpoints are heritable, facilitating mapping of transgene levels to phenotypes. The highly modular and extensible DIAL framework opens up new opportunities for screening and tailoring transgene expression to regulate gene and cell-based therapies.

2.
Cell Syst ; 13(12): 950-973, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36549273

RESUMEN

To elucidate principles operating in native biological systems and to develop novel biotechnologies, synthetic biology aims to build and integrate synthetic gene circuits within native transcriptional networks. The utility of synthetic gene circuits for cell engineering relies on the ability to control the expression of all constituent transgene components. Transgene silencing, defined as the loss of expression over time, persists as an obstacle for engineering primary cells and stem cells with transgenic cargos. In this review, we highlight the challenge that transgene silencing poses to the robust engineering of mammalian cells, outline potential molecular mechanisms of silencing, and present approaches for preventing transgene silencing. We conclude with a perspective identifying future research directions for improving the performance of synthetic gene circuits.


Asunto(s)
Redes Reguladoras de Genes , Ingeniería Genética , Animales , Transgenes/genética , Comunicación Celular , Mamíferos/genética
3.
Nat Chem Biol ; 18(7): 742-750, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35637351

RESUMEN

Biological signal recording enables the study of molecular inputs experienced throughout cellular history. However, current methods are limited in their ability to scale up beyond a single signal in mammalian contexts. Here, we develop an approach using a hyper-efficient dCas12a base editor for multi-signal parallel recording in human cells. We link signals of interest to expression of guide RNAs to catalyze specific nucleotide conversions as a permanent record, enabled by Cas12's guide-processing abilities. We show this approach is plug-and-play with diverse biologically relevant inputs and extend it for more sophisticated applications, including recording of time-delimited events and history of chimeric antigen receptor T cells' antigen exposure. We also demonstrate efficient recording of up to four signals in parallel on an endogenous safe-harbor locus. This work provides a versatile platform for scalable recording of signals of interest for a variety of biological applications.


Asunto(s)
Sistemas CRISPR-Cas , ARN Guía de Kinetoplastida , Animales , Edición Génica , Humanos , Mamíferos , ARN Guía de Kinetoplastida/genética
4.
Mol Cell ; 78(1): 184-191.e3, 2020 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-32027839

RESUMEN

The ability to integrate biological signals and execute a functional response when appropriate is critical for sophisticated cell engineering using synthetic biology. Although the CRISPR-Cas system has been harnessed for synthetic manipulation of the genome, it has not been fully utilized for complex environmental signal sensing, integration, and actuation. Here, we develop a split dCas12a platform and show that it allows for the construction of multi-input, multi-output logic circuits in mammalian cells. The system is highly programmable and can generate expandable AND gates with two, three, and four inputs. It can also incorporate NOT logic by using anti-CRISPR proteins as an OFF switch. By coupling the split dCas12a design to multiple tumor-relevant promoters, we provide a proof of concept that the system can implement logic gating to specifically detect breast cancer cells and execute therapeutic immunomodulatory responses.


Asunto(s)
Proteínas Asociadas a CRISPR , Sistemas CRISPR-Cas , Ingeniería Celular , Neoplasias de la Mama/genética , Neoplasias de la Mama/terapia , Línea Celular Tumoral , Dimerización , Femenino , Células HEK293 , Humanos , Activación Transcripcional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...