Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 14(3): e11012, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38469043

RESUMEN

Interspecific foraging associations (IFAs) are biological interactions where two or more species forage in association with each other. Climate-induced reductions in Arctic sea ice have increased polar bear (Ursus maritimus) foraging in seabird colonies, which creates foraging opportunities for avian predators. We used drone video of bears foraging within a common eider (Somateria mollissima) colony on East Bay Island (Nunavut, Canada) in 2017 to investigate herring gull (Larus argentatus) foraging in association with bears. We recorded nest visitation by gulls following n = 193 eider flushing events from nests during incubation. The probability of gulls visiting eider nests increased with higher number of gulls present (ß = 0.14 ± 0.03 [SE], p < .001) and for nests previously visited by a bear (ß = 1.14 ± 0.49 [SE], p < .02). In our model examining the probability of gulls consuming eggs from nests, we failed to detect statistically significant effects for the number of gulls present (ß = 0.09 ± 0.05 [SE], p < .07) or for nests previously visited by a bear (ß = -0.92 ± 0.71 [SE], p < .19). Gulls preferred to visit nests behind bears (χ2 = 18, df = 1, p < .0001), indicating gulls are risk averse in the presence of polar bears. Our study provides novel insights on an Arctic IFA, and we present evidence that gulls capitalize on nests made available due to disturbance associated with foraging bears, as eiders disturbed off their nest allow gulls easier access to eggs. We suggest the IFA between gulls and polar bears is parasitic, as gulls are consuming terrestrial resources which would have eventually been consumed by bears. This finding has implications for estimating the energetic contribution of bird eggs to polar bear summer diets in that the total number of available clutches to consume may be reduced due to avian predators.

2.
R Soc Open Sci ; 10(10): 221108, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37800157

RESUMEN

Several predator-prey systems are in flux as an indirect result of climate change. In the Arctic, earlier sea-ice loss is driving polar bears (Ursus maritimus) onto land when many colonial nesting seabirds are breeding. The result is a higher threat of nest predation for birds with potential limited ability to respond. We quantified heart rate change in a large common eider (Somateria mollissima) breeding colony in the Canadian Arctic to explore their adaptive capacity to keep pace with the increasing risk of egg predation by polar bears. Eiders displayed on average higher heart rates from baseline when polar bears were within their field of view. Moreover, eiders were insensitive to variation in the distance bears were to their nests, but exhibited mild bradycardia (lowered heart rate) the longer the eider was exposed to the bear given the hen's visibility. Results indicate that a limited ability to assess the risks posed by polar bears may result in long-term fitness consequences for eiders from the increasing frequency in interactions with this predator.

3.
Ecol Evol ; 13(4): e9923, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37091555

RESUMEN

The degree to which individuals adjust foraging behavior in response to environmental variability can impact foraging success, leading to downstream impacts on fitness and population dynamics. We examined the foraging flexibility, average daily energy expenditure, and foraging success of an ice-associated Arctic seabird, the thick-billed murre (Uria lomvia) in response to broad-scale environmental conditions at two different-sized, low Arctic colonies located <300 km apart. First, we compared foraging behavior (measured via GPS units), average daily energy expenditure (estimated from GPS derived activity budgets), and foraging success (nutritional state measured via nutritional biomarkers pre- and post- GPS deployment) of murres at two colonies, which differ greatly in size: 30,000 pairs breed on Coats Island, Nunavut, and 400,000 pairs breed on Digges Island, Nunavut. Second, we tested whether colony size within the same marine ecosystem altered foraging behavior in response to broad-scale environmental variability. Third, we tested whether environmentally induced foraging flexibility influenced the foraging success of murres. Murres at the larger colony foraged farther and longer but made fewer trips, resulting in a lower nutritional state and lower foraging success compared to birds at the smaller colony. Foraging behavior and foraging success varied in response to environmental variation, with murres at both colonies making longer, more distant foraging trips in high ice regimes during incubation, suggesting flexibility in responding to environmental variability. However, only birds at the larger colony showed this same flexibility during chick rearing. Foraging success at both colonies was higher during high ice regimes, suggesting greater prey availability. Overall, murres from the larger colony exhibited lower foraging success, and their foraging behavior showed stronger responses to changes in broad-scale conditions such as sea ice regime. Taken together, this suggests that larger Arctic seabird colonies have higher behavioral and demographic sensitivity to environmental change.

4.
Gen Comp Endocrinol ; 337: 114261, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36907529

RESUMEN

Global climate change is causing abiotic shifts such as higher air and ocean temperatures, and disappearing sea ice in Arctic ecosystems. These changes influence Arctic-breeding seabird foraging ecology by altering prey availability and selection, affecting individual body condition, reproductive success, and exposure to contaminants such as mercury (Hg). The cumulative effects of alterations to foraging ecology and Hg exposure may interactively alter the secretion of key reproductive hormones such as prolactin (PRL), important for parental attachment to eggs and offspring and overall reproductive success. However, more research is needed to investigate the relationships between these potential links. Using data collected from 106 incubating female common eiders (Somateria mollissima) at six Arctic and sub-Arctic colonies, we examined whether the relationship between individual foraging ecology (assessed using δ13C, δ15N) and total Hg (THg) exposure predicted PRL levels. We found a significant, complex interaction between δ13C, δ15N and THg on PRL, suggesting that individuals cumulatively foraging at lower trophic levels, in phytoplankton-dominant environments, and with the highest THg levels had the most constant significant relationship PRL levels. Cumulatively, these three interactive variables resulted in lowered PRL. Overall, results demonstrate the potential downstream and cumulative implications of environmentally induced changes in foraging ecology, in combination with THg exposure, on hormones known to influence reproductive success in seabirds. These findings are notable in the context of continuing environmental and food web changes in Arctic systems, which may make seabird populations more susceptible to ongoing stressors.


Asunto(s)
Ecosistema , Mercurio , Humanos , Animales , Femenino , Responsabilidad Parental , Patos , Cadena Alimentaria , Organismos Acuáticos , Regiones Árticas , Hormonas , Monitoreo del Ambiente/métodos
5.
Sci Rep ; 12(1): 18804, 2022 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-36335150

RESUMEN

Aerial drones are increasingly being used as tools for ecological research and wildlife monitoring in hard-to-access study systems, such as in studies of colonial-nesting birds. Despite their many advantages over traditional survey methods, there remains concerns about possible disturbance effects that standard drone survey protocols may have on bird colonies. There is a particular gap in the study of their influence on physiological measures of stress. We measured heart rates of incubating female common eider ducks (Somateria mollissima) to determine whether our drone-based population survey affected them. To do so, we used heart-rate recorders placed in nests to quantify their heart rate in response to a quadcopter drone flying transects 30 m above the nesting colony. Eider heart rate did not change from baseline (measured in the absence of drone survey flights) by a drone flying at a fixed altitude and varying horizontal distances from the bird. Our findings suggest that carefully planned drone-based surveys of focal species have the potential to be carried out without causing physiological impacts among colonial-nesting eiders.


Asunto(s)
Patos , Dispositivos Aéreos No Tripulados , Animales , Femenino , Patos/fisiología , Aves , Animales Salvajes , Organismos Acuáticos
6.
Oecologia ; 200(3-4): 503-514, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36229693

RESUMEN

Organisms must overcome environmental limitations to optimize their investment in life history stages to maximize fitness. Human-induced climate change is generating increasingly variable environmental conditions, impacting the demography of prey items and, therefore, the ability of consumers to successfully access resources to fuel reproduction. While climate change effects are especially pronounced in the Arctic, it is unknown whether organisms can adjust foraging decisions to match such changes. We used a 9-year blood plasma δ13C and δ15N data set from over 700 pre-breeding Arctic common eiders (Somateria mollissima) to assess breeding-stage and inter-annual variation in isotopic niche, and whether inferred trophic flexibility was related to colony-level breeding parameters and environmental variation. Eider blood isotope values varied both across years and breeding stages, and combined with only weak relationships between isotopic metrics and environmental conditions suggests that pre-breeding eiders can make flexible foraging decisions to overcome constraints imposed by local abiotic conditions. From an investment perspective, an inshore, smaller isotopic niche predicted a greater probability to invest in reproduction, but was not related to laying phenology. Proximately, our results provide evidence that eiders breeding in the Arctic can alter their diet at the onset of reproductive investment to overcome increases in the energetic demand of egg production. Ultimately, Arctic pre-breeding common eiders may have the stage- and year-related foraging flexibility to respond to abiotic variation to reproduce successfully.


Asunto(s)
Aves , Reproducción , Animales , Humanos , Regiones Árticas
7.
Proc Biol Sci ; 289(1981): 20220300, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-36000233

RESUMEN

Rising global temperatures are expected to increase reproductive costs for wildlife as greater thermoregulatory demands interfere with reproductive activities. However, predicting the temperatures at which reproductive performance is negatively impacted remains a significant hurdle. Using a thermoregulatory polygon approach, we derived a reproductive threshold temperature for an Arctic songbird-the snow bunting (Plectrophenax nivalis). We defined this threshold as the temperature at which individuals must reduce activity to suboptimal levels (i.e. less than four-time basal metabolic rate) to sustain nestling provisioning and avoid overheating. We then compared this threshold to operative temperatures recorded at high (82° N) and low (64° N) Arctic sites to estimate how heat constraints translate into site-specific impacts on sustained activity level. We predict buntings would become behaviourally constrained at operative temperatures above 11.7°C, whereupon they must reduce provisioning rates to avoid overheating. Low-Arctic sites had larger fluctuations in solar radiation, consistently producing daily periods when operative temperatures exceeded 11.7°C. However, high-latitude birds faced entire, consecutive days when parents would be unable to sustain required provisioning rates. These data indicate that Arctic warming is probably already disrupting the breeding performance of cold-specialist birds and suggests counterintuitive and severe negative impacts of warming at higher latitude breeding locations.


Asunto(s)
Pájaros Cantores , Animales , Regiones Árticas , Respuesta al Choque Térmico , Reproducción , Temperatura
8.
Curr Biol ; 32(17): 3800-3807.e3, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-35870447

RESUMEN

Density-dependent prey depletion around breeding colonies has long been considered an important factor controlling the population dynamics of colonial animals.1-4 Ashmole proposed that as seabird colony size increases, intraspecific competition leads to declines in reproductive success, as breeding adults must spend more time and energy to find prey farther from the colony.1 Seabird colony size often varies over several orders of magnitude within the same species and can include millions of individuals per colony.5,6 As such, colony size likely plays an important role in determining the individual behavior of its members and how the colony interacts with the surrounding environment.6 Using tracking data from murres (Uria spp.), the world's most densely breeding seabirds, we show that the distribution of foraging-trip distances scales to colony size0.33 during the chick-rearing stage, consistent with Ashmole's halo theory.1,2 This pattern occurred across colonies varying in size over three orders of magnitude and distributed throughout the North Atlantic region. The strong relationship between colony size and foraging range means that the foraging areas of some colonial species can be estimated from colony sizes, which is more practical to measure over a large geographic scale. Two-thirds of the North Atlantic murre population breed at the 16 largest colonies; by extrapolating the predicted foraging ranges to sites without tracking data, we show that only two of these large colonies have significant coverage as marine protected areas. Our results are an important example of how theoretical models, in this case, Ashmole's version of central-place-foraging theory, can be applied to inform conservation and management in colonial breeding species.


Asunto(s)
Charadriiformes , Animales , Ecosistema , Dinámica Poblacional , Reproducción
9.
Ecol Evol ; 12(2): e8588, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35154656

RESUMEN

The availability and investment of energy among successive life-history stages is a key feature of carryover effects. In migratory organisms, examining how both winter and spring experiences carryover to affect breeding activity is difficult due to the challenges in tracking individuals through these periods without impacting their behavior, thereby biasing results.Using common eiders Somateria mollissima, we examined whether spring conditions at an Arctic breeding colony (East Bay Island, Nunavut, Canada) can buffer the impacts of winter temperatures on body mass and breeding decisions in birds that winter at different locations (Nuuk and Disko Bay, Greenland, and Newfoundland, Canada; assessed by analyzing stable isotopes of 13-carbon in winter-grown claw samples). Specifically, we used path analysis to examine how wintering and spring environmental conditions interact to affect breeding propensity (a key reproductive decision influencing lifetime fitness in female eiders) within the contexts of the timing of colony arrival, pre-breeding body mass (body condition), and a physiological proxy for foraging effort (baseline corticosterone).We demonstrate that warmer winter temperatures predicted lower body mass at arrival to the nesting colony, whereas warmer spring temperatures predicted earlier arrival dates and higher arrival body mass. Both higher body mass and earlier arrival dates of eider hens increased the probability that birds would initiate laying (i.e., higher breeding propensity). However, variation in baseline corticosterone was not linked to either winter or spring temperatures, and it had no additional downstream effects on breeding propensity.Overall, we demonstrate that favorable pre-breeding conditions in Arctic-breeding common eiders can compensate for the impact that unfavorable wintering conditions can have on breeding investment, perhaps due to greater access to foraging areas prior to laying.

11.
Sci Total Environ ; 807(Pt 2): 150882, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-34627894

RESUMEN

Wildlife are exposed to multiple stressors across life-history stages, the effects of which can be amplified as human activity surges globally. In Arctic regions, increasing air and ocean temperatures, more severe weather systems, and exposure to environmental contaminants all represent stressors occurring simultaneously. While Arctic vertebrates, including marine birds, are expected to be at risk of adverse effects from these individual stressors, few studies have researched their combined impacts on breeding behaviour and reproductive success. The interactive effects of environmental conditions and mercury (Hg) contamination on laying phenology and incubation behaviour were examined in female common eiders (Somateria mollissima, mitiq, ᒥᑎᖅ áŠá’ªá…ᓕᒡᔪᐊᖅ) nesting at Canada's largest Arctic breeding colony. Conditions with higher pre-breeding air temperatures were linked to females with higher egg Hg concentrations laying earlier than those with lower Hg values. Furthermore, examination of a total of 190 days of incubation behaviour from 61 eiders across two years revealed a negative relationship between wind speed and the frequency of incubation interruptions. Importantly, exposure to higher air temperatures combined with lower Hg concentrations was significantly correlated with increased incubation interruptions. Although previous research has shown that warmer spring temperatures could afford lower quality females more time to improve body condition to successfully lay, results suggest these females may face stronger cumulative fitness costs during incubation in warmer years, potentially in combination with the effects of Hg on physiological stress and hormone secretion. This study highlights how multiple stressors exposure, driven by human-induced environmental changes, can have a complex influence on reproduction.


Asunto(s)
Aves , Cruzamiento , Animales , Regiones Árticas , Femenino , Humanos
12.
Oecologia ; 197(3): 661-674, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34657196

RESUMEN

Droughts can affect invertebrate communities in wetlands, which can have bottom-up effects on the condition and survival of top predators. Shorebirds, key predators at coastal wetlands, have experienced widespread population declines and could be negatively affected by droughts. We explored, in detail, the effects of drought on multiple aspects of shorebird stopover and migration ecology by contrasting a year with average wet/dry conditions (2016) with a year with moderate drought (2017) at a major subarctic stopover site on southbound migration. We also examined the effects of drought on shorebird body mass during stopover across 14 years (historical: 1974-1982 and present-day: 2014-2018). For the detailed comparison of two years, in the year with moderate drought we documented lower invertebrate abundance at some sites, higher prey family richness in shorebird faecal samples, lower shorebird refuelling rates, shorter stopover durations for juveniles, and, for most species, a higher probability of making a subsequent stopover in North America after departing the subarctic, compared to the year with average wet/dry conditions. In the 14-year dataset, shorebird body mass tended to be lower in drier years. We show that even short-term, moderate drought conditions can negatively affect shorebird refuelling performance at coastal wetlands, which may carry-over to affect subsequent stopover decisions. Given shorebird population declines and predicted changes in the severity and duration of droughts with climate change, researchers should prioritize a better understanding of how droughts affect shorebird refuelling performance and survival.


Asunto(s)
Migración Animal , Humedales , Animales , Sequías , Ecología , Invertebrados
13.
Cell Mol Gastroenterol Hepatol ; 12(5): 1847-1872.e0, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34534703

RESUMEN

BACKGROUND & AIMS: Circadian rhythms are daily physiological oscillations driven by the circadian clock: a 24-hour transcriptional timekeeper that regulates hormones, inflammation, and metabolism. Circadian rhythms are known to be important for health, but whether their loss contributes to colorectal cancer is not known. We tested the nonredundant clock gene Bmal1 in intestinal homeostasis and tumorigenesis, using the Apcmin model of colorectal cancer. METHODS: Bmal1 mutant, epithelium-conditional Bmal1 mutant, and photoperiod (day/night cycle) disrupted mice bearing the Apcmin allele were assessed for tumorigenesis. Tumors and normal nontransformed tissue were characterized. Intestinal organoids were assessed for circadian transcription rhythms by RNA sequencing, and in vivo and organoid assays were used to test Bmal1-dependent proliferation and self-renewal. RESULTS: Loss of Bmal1 or circadian photoperiod increases tumor initiation. In the intestinal epithelium the clock regulates transcripts involved in regeneration and intestinal stem cell signaling. Tumors have no self-autonomous clock function and only weak clock function in vivo. Apcmin clock-disrupted tumors show high Yes-associated protein 1 (Hippo signaling) activity but show low Wnt (Wingless and Int-1) activity. Intestinal organoid assays show that loss of Bmal1 increases self-renewal in a Yes-associated protein 1-dependent manner. CONCLUSIONS: Bmal1 regulates intestinal stem cell pathways, including Hippo signaling, and the loss of circadian rhythms potentiates tumor initiation. Transcript profiling: GEO accession number: GSE157357.


Asunto(s)
Factores de Transcripción ARNTL/genética , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Relojes Circadianos/genética , Regulación de la Expresión Génica , Transducción de Señal , Células Madre/metabolismo , Animales , Autorrenovación de las Células/genética , Ritmo Circadiano , Vía de Señalización Hippo , Inmunohistoquímica , Ratones , Ratones Noqueados , Membrana Mucosa/inmunología , Membrana Mucosa/metabolismo , Membrana Mucosa/patología , Mutación , Proteínas Señalizadoras YAP/metabolismo
14.
Sci Total Environ ; 796: 148935, 2021 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-34274678

RESUMEN

Human industrialization has resulted in rapid climate change, leading to wide-scale environmental shifts. These shifts can modify food web dynamics by altering the abundance and distribution of primary producers (ice algae and phytoplankton), as well as animals at higher trophic levels. Methylmercury (MeHg) is a neuro-endocrine disrupting compound which biomagnifies in animals as a function of prey choice, and as such bioavailability is affected by altered food web dynamics and adds an important risk-based dimension in studies of foraging ecology. Multidimensional niche dynamics (MDND; δ13C, δ15N, THg; total mercury) were determined among breeding common eider (Somateria mollissima) ducks sampled from 10 breeding colonies distributed across the circumpolar Arctic and subarctic. Results showed high variation in MDND among colonies as indicated by niche size and ranges in δ13C, δ15N and THg values in relation to spatial differences in primary production inferred from sea-ice presence and colony migratory status. Colonies with higher sea-ice cover during the pre-incubation period had higher median colony THg, δ15N, and δ13C. Individuals at migratory colonies had relatively higher THg and δ15N, and lower δ13C, suggesting a higher trophic position and a greater reliance on phytoplankton-based prey. It was concluded that variation in MDND exists among eider colonies which influenced individual blood THg concentrations. Further exploration of spatial ecotoxicology and MDND at each individual site is important to examine the relationships between anthropogenic activities, foraging behaviour, and the related risks of contaminant exposure at even low, sub-lethal concentrations that may contribute to deleterious effects on population stability over time. Overall, multidimensional niche analysis that incorporates multiple isotopic and contaminant metrics could help identify those populations at risk to rapidly altered food web dynamics.


Asunto(s)
Benchmarking , Mercurio , Animales , Regiones Árticas , Aves , Cruzamiento , Monitoreo del Ambiente , Cadena Alimentaria , Humanos , Mercurio/análisis
15.
J Exp Biol ; 224(13)2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34232314

RESUMEN

The Arctic is warming at approximately twice the global rate, with well-documented indirect effects on wildlife. However, few studies have examined the direct effects of warming temperatures on Arctic wildlife, leaving the importance of heat stress unclear. Here, we assessed the direct effects of increasing air temperatures on the physiology of thick-billed murres (Uria lomvia), an Arctic seabird with reported mortalities due to heat stress while nesting on sun-exposed cliffs. We used flow-through respirometry to measure the response of body temperature, resting metabolic rate, evaporative water loss and evaporative cooling efficiency (the ratio of evaporative heat loss to metabolic heat production) in murres while experimentally increasing air temperature. Murres had limited heat tolerance, exhibiting: (1) a low maximum body temperature (43.3°C); (2) a moderate increase in resting metabolic rate relative that within their thermoneutral zone (1.57 times); (3) a small increase in evaporative water loss rate relative that within their thermoneutral zone (1.26 times); and (4) a low maximum evaporative cooling efficiency (0.33). Moreover, evaporative cooling efficiency decreased with increasing air temperature, suggesting murres were producing heat at a faster rate than they were dissipating it. Larger murres also had a higher rate of increase in resting metabolic rate and a lower rate of increase in evaporative water loss than smaller murres; therefore, evaporative cooling efficiency declined with increasing body mass. As a cold-adapted bird, murres' limited heat tolerance likely explains their mortality on warm days. Direct effects of overheating on Arctic wildlife may be an important but under-reported impact of climate change.


Asunto(s)
Termotolerancia , Animales , Aves , Regulación de la Temperatura Corporal , Calor , Pérdida Insensible de Agua
16.
Sci Rep ; 11(1): 15252, 2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34315944

RESUMEN

Neonicotinoids are insecticides widely used as seed treatments that appear to have multiple negative effects on birds at a diversity of biological scales. Adult birds exposed to a low dose of imidacloprid, one of the most commonly used neonicotinoids, presented reduced fat stores, delayed migration and potentially altered orientation. However, little is known on the effect of imidacloprid on birds growth rate despite studies that have documented disruptive effects of low imidacloprid doses on thyroid gland communication. We performed a [Formula: see text] factorial design experiment in Zebra finches, in which nestling birds were exposed to a very low dose (0.205 mg kg body [Formula: see text]) of imidacloprid combined with food restriction during posthatch development. During the early developmental period, imidacloprid exposure resulted in an improvement of body condition index in treated nestlings relative to controls. Imidacloprid also led to compensatory growth in food restricted nestlings. This early life neonicotinoid exposure also carried over to adult age, with exposed birds showing higher lean mass and basal metabolic rate than controls at ages of 90-800 days. This study presents the first evidence that very low-dose neonicotinoid exposure during early life can permanently alter adult phenotype in birds.


Asunto(s)
Neonicotinoides/farmacología , Animales , Neonicotinoides/metabolismo , Pájaros Cantores/crecimiento & desarrollo , Pájaros Cantores/metabolismo
17.
Conserv Physiol ; 9(1): coab030, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33959293

RESUMEN

Conservation physiology represents a recently emerging arm of conservation science that applies physiological tools and techniques to understand and solve conservation issues. While a multi-disciplinary toolbox can only help to address the global biodiversity crisis, any field can face challenges while becoming established, particularly highly applied disciplines that require multi-stakeholder involvement. Gaining first-hand knowledge of the challenges that conservation physiologists are facing can help characterize the current state of the field and build a better foundation for determining how it can grow. Through an online survey of 468 scientists working at the intersection of physiology and conservation, we aimed to identify characteristics of those engaging in conservation physiology research (e.g. demographics, primary taxa of study), gauge conservation physiology's role in contributing to on-the-ground conservation action, identify the perceived barriers to achieving success and determine how difficult any identified barriers are to overcome. Despite all participants having experience combining physiology and conservation, only one-third considered themselves to be 'conservation physiologists'. Moreover, there was a general perception that conservation physiology does not yet regularly lead to tangible conservation success. Respondents identified the recent conceptualization of the field and the broader issue of adequately translating science into management action as the primary reasons for these deficits. Other significant barriers that respondents have faced when integrating physiology and conservation science included a lack of funding, logistical constraints (e.g. sample sizes, obtaining permits) and a lack of physiological baseline data (i.e. reference ranges of a physiological metric's 'normal' or pre-environmental change levels). We identified 12 actions based on suggestions of survey participants that we anticipate will help deconstruct the barriers and continue to develop a narrative of physiology that is relevant to conservation science, policy and practice.

18.
R Soc Open Sci ; 8(4): 210391, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33868701

RESUMEN

Climate-mediated sea-ice loss is disrupting the foraging ecology of polar bears (Ursus maritimus) across much of their range. As a result, there have been increased reports of polar bears foraging on seabird eggs across parts of their range. Given that polar bears have evolved to hunt seals on ice, they may not be efficient predators of seabird eggs. We investigated polar bears' foraging performance on common eider (Somateria mollissima) eggs on Mitivik Island, Nunavut, Canada to test whether bear decision-making heuristics are consistent with expectations of optimal foraging theory. Using aerial-drones, we recorded multiple foraging bouts over 11 days, and found that as clutches were depleted to completion, bears did not exhibit foraging behaviours matched to resource density. As the season progressed, bears visited fewer nests overall, but marginally increased their visitation to nests that were already empty. Bears did not display different movement modes related to nest density, but became less selective in their choice of clutches to consume. Lastly, bears that capitalized on visual cues of flushing eider hens significantly increased the number of clutches they consumed; however, they did not use this strategy consistently or universally. The foraging behaviours exhibited by polar bears in this study suggest they are inefficient predators of seabird eggs, particularly in the context of matching behaviours to resource density.

19.
Conserv Physiol ; 9(1): coab009, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33859825

RESUMEN

Environmental change and biodiversity loss are but two of the complex challenges facing conservation practitioners and policy makers. Relevant and robust scientific knowledge is critical for providing decision-makers with the actionable evidence needed to inform conservation decisions. In the Anthropocene, science that leads to meaningful improvements in biodiversity conservation, restoration and management is desperately needed. Conservation Physiology has emerged as a discipline that is well-positioned to identify the mechanisms underpinning population declines, predict responses to environmental change and test different in situ and ex situ conservation interventions for diverse taxa and ecosystems. Here we present a consensus list of 10 priority research themes. Within each theme we identify specific research questions (100 in total), answers to which will address conservation problems and should improve the management of biological resources. The themes frame a set of research questions related to the following: (i) adaptation and phenotypic plasticity; (ii) human-induced environmental change; (iii) human-wildlife interactions; (iv) invasive species; (v) methods, biomarkers and monitoring; (vi) policy, engagement and communication; (vii) pollution; (viii) restoration actions; (ix) threatened species; and (x) urban systems. The themes and questions will hopefully guide and inspire researchers while also helping to demonstrate to practitioners and policy makers the many ways in which physiology can help to support their decisions.

20.
Ecol Evol ; 11(4): 1609-1619, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33613993

RESUMEN

Arctic animals inhabit some of the coldest environments on the planet and have evolved physiological mechanisms for minimizing heat loss under extreme cold. However, the Arctic is warming faster than the global average and how well Arctic animals tolerate even moderately high air temperatures (T a) is unknown.Using flow-through respirometry, we investigated the heat tolerance and evaporative cooling capacity of snow buntings (Plectrophenax nivalis; ≈31 g, N = 42), a cold specialist, Arctic songbird. We exposed buntings to increasing T a and measured body temperature (T b), resting metabolic rate (RMR), rates of evaporative water loss (EWL), and evaporative cooling efficiency (the ratio of evaporative heat loss to metabolic heat production).Buntings had an average (±SD) T b of 41.3 ± 0.2°C at thermoneutral T a and increased T b to a maximum of 43.5 ± 0.3°C. Buntings started panting at T a of 33.2 ± 1.7°C, with rapid increases in EWL starting at T a = 34.6°C, meaning they experienced heat stress when air temperatures were well below their body temperature. Maximum rates of EWL were only 2.9× baseline rates at thermoneutral T a, a markedly lower increase than seen in more heat-tolerant arid-zone species (e.g., ≥4.7× baseline rates). Heat-stressed buntings also had low evaporative cooling efficiencies, with 95% of individuals unable to evaporatively dissipate an amount of heat equivalent to their own metabolic heat production.Our results suggest that buntings' well-developed cold tolerance may come at the cost of reduced heat tolerance. As the Arctic warms, and this and other species experience increased periods of heat stress, a limited capacity for evaporative cooling may force birds to increasingly rely on behavioral thermoregulation, such as minimizing activity, at the expense of diminished performance or reproductive investment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA