Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Elife ; 122023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37158590

RESUMEN

Complex motor skills in vertebrates require specialized upper motor neurons with precise action potential (AP) firing. To examine how diverse populations of upper motor neurons subserve distinct functions and the specific repertoire of ion channels involved, we conducted a thorough study of the excitability of upper motor neurons controlling somatic motor function in the zebra finch. We found that robustus arcopallialis projection neurons (RAPNs), key command neurons for song production, exhibit ultranarrow spikes and higher firing rates compared to neurons controlling non-vocal somatic motor functions (dorsal intermediate arcopallium [AId] neurons). Pharmacological and molecular data indicate that this striking difference is associated with the higher expression in RAPNs of high threshold, fast-activating voltage-gated Kv3 channels, that likely contain Kv3.1 (KCNC1) subunits. The spike waveform and Kv3.1 expression in RAPNs mirror properties of Betz cells, specialized upper motor neurons involved in fine digit control in humans and other primates but absent in rodents. Our study thus provides evidence that songbirds and primates have convergently evolved the use of Kv3.1 to ensure precise, rapid AP firing in upper motor neurons controlling fast and complex motor skills.


Asunto(s)
Corteza Motora , Canales de Potasio con Entrada de Voltaje , Pájaros Cantores , Animales , Potenciales de Acción/fisiología , Interneuronas , Neuronas Motoras , Canales de Potasio Shaw
2.
Macromolecules ; 55(22): 10188-10196, 2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36438596

RESUMEN

Recently, we reported time-resolved synchrotron small-angle X-ray scattering (TR-SAXS) studies during aqueous emulsion polymerization using a bespoke stirrable reaction cell (J. Am. Chem. Soc. 2021, 143, 1474-1484). This proof-of-concept study utilized a semifluorinated specialty monomer (2,2,2-trifluoroethyl methacrylate) to ensure high X-ray contrast relative to water. Herein, we extend this approach to emulsion polymerization of methyl methacrylate (MMA) in the presence or absence of sodium dodecyl sulfate (SDS) at 70 °C. Solution conductivity measurements for this anionic surfactant indicated a critical micelle concentration (CMC) of 10.9 mM at this temperature. Thus, SDS was employed at either 1.0 or 20.0 mM, which corresponds to well below or well above its CMC. Postmortem analysis by 1H NMR spectroscopy indicated MMA conversions of 93-95% for these three formulations. We demonstrate that the X-ray contrast between water and PMMA is sufficiently large to produce high-quality scattering patterns during TR-SAXS experiments. Such patterns were fitted using a hard-sphere scattering model to monitor the evolution in particle diameter. This enabled (i) determination of the time point for the onset of nucleation and (ii) the evolution in particle size to be monitored during the MMA polymerization. The final particle diameters obtained from such TR-SAXS studies were consistent with postmortem DLS analyses, while TEM studies confirmed that near-monodisperse latex particles were formed. Micellar nucleation occurs within just 2 min when the SDS concentration is well above its CMC, resulting in a high particle number concentration and relatively small latex particles. In contrast, when SDS is either absent or present below its CMC, particle nuclei are formed by homogeneous nucleation over significantly longer time scales (14-15 min). In the latter case, adsorption of SDS onto nascent particles reduces their coagulation, giving rise to a larger number of smaller particles compared to the surfactant-free polymerization. However, the characteristic time required for the onset of nucleation is barely affected because this is mainly controlled by the kinetics of homogeneous polymerization of the relatively water-soluble MMA monomer within the aqueous phase. These results suggest that the aqueous emulsion polymerization of several other (meth)acrylic monomers, and perhaps also vinyl acetate, may be amenable to TR-SAXS studies.

3.
Nat Commun ; 12(1): 6762, 2021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-34799550

RESUMEN

The underlying mechanisms that promote precise spiking in upper motor neurons controlling fine motor skills are not well understood. Here we report that projection neurons in the adult zebra finch song nucleus RA display robust high-frequency firing, ultra-narrow spike waveforms, superfast Na+ current inactivation kinetics, and large resurgent Na+ currents (INaR). These properties of songbird pallial motor neurons closely resemble those of specialized large pyramidal neurons in mammalian primary motor cortex. They emerge during the early phases of song development in males, but not females, coinciding with a complete switch of Na+ channel subunit expression from Navß3 to Navß4. Dynamic clamping and dialysis of Navß4's C-terminal peptide into juvenile RA neurons provide evidence that Navß4, and its associated INaR, promote neuronal excitability. We thus propose that INaR modulates the excitability of upper motor neurons that are required for the execution of fine motor skills.


Asunto(s)
Centro Vocal Superior/fisiología , Actividad Motora/fisiología , Corteza Motora/fisiología , Neuronas Motoras/metabolismo , Sodio/metabolismo , Potenciales de Acción/fisiología , Animales , Pinzones , Centro Vocal Superior/citología , Masculino , Corteza Motora/citología , Red Nerviosa/fisiología , Técnicas de Placa-Clamp , Subunidades beta de Canales de Sodio Activados por Voltaje/metabolismo
4.
Sci Adv ; 7(24)2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34117069

RESUMEN

Flight in birds evolved through patterning of the wings from forelimbs and transition from alternating gait to synchronous flapping. In mammals, the spinal midline guidance molecule ephrin-B3 instructs the wiring that enables limb alternation, and its deletion leads to synchronous hopping gait. Here, we show that the ephrin-B3 protein in birds lacks several motifs present in other vertebrates, diminishing its affinity for the EphA4 receptor. The avian ephrin-B3 gene lacks an enhancer that drives midline expression and is missing in galliforms. The morphology and wiring at brachial levels of the chicken embryonic spinal cord resemble those of ephrin-B3 null mice. Dorsal midline decussation, evident in the mutant mouse, is apparent at the chick brachial level and is prevented by expression of exogenous ephrin-B3 at the roof plate. Our findings support a role for loss of ephrin-B3 function in shaping the avian brachial spinal cord circuitry and facilitating synchronous wing flapping.

5.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33903244

RESUMEN

The low-density lipoprotein receptor (LDLR) is key to cellular cholesterol uptake and is also the main receptor for the vesicular stomatitis virus glycoprotein (VSV G). Here we show that in songbirds LDLR is highly divergent and lacks domains critical for ligand binding and cellular trafficking, inconsistent with universal structure conservation and function across vertebrates. Linked to the LDLR functional domain loss, zebra finches show inefficient infectivity by lentiviruses (LVs) pseudotyped with VSV G, which can be rescued by the expression of human LDLR. Finches also show an atypical plasma lipid distribution that relies largely on high-density lipoprotein (HDL). These findings provide insights into the genetics and evolution of viral infectivity and cholesterol transport mechanisms in vertebrates.


Asunto(s)
Colesterol/genética , Lípidos/sangre , Glicoproteínas de Membrana/genética , Receptores de LDL/genética , Proteínas del Envoltorio Viral/genética , Animales , Transporte Biológico/genética , Colesterol/metabolismo , Pinzones/sangre , Pinzones/genética , Regulación de la Expresión Génica/genética , Humanos , Ligandos , Receptores de LDL/sangre
6.
Sci Rep ; 10(1): 18767, 2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-33127988

RESUMEN

How the evolution of complex behavioral traits is associated with the emergence of novel brain pathways is largely unknown. Songbirds, like humans, learn vocalizations via tutor imitation and possess a specialized brain circuitry to support this behavior. In a comprehensive in situ hybridization effort, we show that the zebra finch vocal robust nucleus of the arcopallium (RA) shares numerous markers (e.g. SNCA, PVALB) with the adjacent dorsal intermediate arcopallium (AId), an avian analog of mammalian deep cortical layers with involvement in motor function. We also identify markers truly unique to RA and thus likely linked to modulation of vocal motor function (e.g. KCNC1, GABRE), including a subset of the known shared markers between RA and human laryngeal motor cortex (e.g. SLIT1, RTN4R, LINGO1, PLXNC1). The data provide novel insights into molecular features unique to vocal learning circuits, and lend support for the motor theory for vocal learning origin.


Asunto(s)
Pinzones/fisiología , Corteza Motora/fisiología , Animales , Conducta Animal , Femenino , Perfilación de la Expresión Génica , Hibridación in Situ , Masculino , Vocalización Animal
7.
Biomacromolecules ; 21(11): 4396-4441, 2020 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-32543173

RESUMEN

A comprehensive overview of the fundamentals of emulsion polymerization and related processes is presented with the object of providing theoretical and practical understanding to researchers considering use of these methods for synthesis of polymer colloids across a wide range of applications. Hence, the overview has been written for a general scientific audience with no prior knowledge assumed. Succinct introductions are given to key topics of background science to assist the reader. Importance is placed on ensuring mechanistic understanding of these complex polymerizations and how the processes can be used to create polymer colloids that have particles with well-defined properties and morphology. Mathematical equations and associated theory are given where they enhance understanding and learning and where they are particularly useful for practical application. Practical guidance also is given for new researchers so that they can begin using the various processes effectively and in ways that avoid common mistakes.


Asunto(s)
Coloides , Polímeros , Emulsiones , Polimerizacion
8.
J Comp Neurol ; 528(12): 2099-2131, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32037563

RESUMEN

An in-depth understanding of the genetics and evolution of brain function and behavior requires a detailed mapping of gene expression in functional brain circuits across major vertebrate clades. Here we present the Zebra finch Expression Brain Atlas (ZEBrA; www.zebrafinchatlas.org, RRID: SCR_012988), a web-based resource that maps the expression of genes linked to a broad range of functions onto the brain of zebra finches. ZEBrA is a first of its kind gene expression brain atlas for a bird species and a first for any sauropsid. ZEBrA's >3,200 high-resolution digital images of in situ hybridized sections for ~650 genes (as of June 2019) are presented in alignment with an annotated histological atlas and can be browsed down to cellular resolution. An extensive relational database connects expression patterns to information about gene function, mouse expression patterns and phenotypes, and gene involvement in human diseases and communication disorders. By enabling brain-wide gene expression assessments in a bird, ZEBrA provides important substrates for comparative neuroanatomy and molecular brain evolution studies. ZEBrA also provides unique opportunities for linking genetic pathways to vocal learning and motor control circuits, as well as for novel insights into the molecular basis of sex steroids actions, brain dimorphisms, reproductive and social behaviors, sleep function, and adult neurogenesis, among many fundamental themes.


Asunto(s)
Atlas como Asunto , Encéfalo/anatomía & histología , Encéfalo/fisiología , Pinzones/anatomía & histología , Pinzones/fisiología , Animales , Evolución Biológica , Internet , Neuroanatomía , Transcriptoma
9.
BMC Genomics ; 20(1): 629, 2019 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-31375088

RESUMEN

BACKGROUND: Vocal learning, the ability to learn to produce vocalizations through imitation, relies on specialized brain circuitry known in songbirds as the song system. While the connectivity and various physiological properties of this system have been characterized, the molecular genetic basis of neuronal excitability in song nuclei remains understudied. We have focused our efforts on examining voltage-gated ion channels to gain insight into electrophysiological and functional features of vocal nuclei. A previous investigation of potassium channel genes in zebra finches (Taeniopygia guttata) revealed evolutionary modifications unique to songbirds, as well as transcriptional specializations in the song system [Lovell PV, Carleton JB, Mello CV. BMC Genomics 14:470 2013]. Here, we expand this approach to sodium, calcium, and chloride channels along with their modulatory subunits using comparative genomics and gene expression analysis encompassing microarrays and in situ hybridization. RESULTS: We found 23 sodium, 38 calcium, and 33 chloride channel genes (HGNC-based classification) in the zebra finch genome, several of which were previously unannotated. We determined 15 genes are missing relative to mammals, including several genes (CLCAs, BEST2) linked to olfactory transduction. The majority of sodium and calcium but few chloride channels showed differential expression in the song system, among them SCN8A and CACNA1E in the direct motor pathway, and CACNG4 and RYR2 in the anterior forebrain pathway. In several cases, we noted a seemingly coordinated pattern across multiple nuclei (SCN1B, SCN3B, SCN4B, CACNB4) or sparse expression (SCN1A, CACNG5, CACNA1B). CONCLUSION: The gene families examined are highly conserved between avian and mammalian lineages. Several cases of differential expression likely support high-frequency and burst firing in specific song nuclei, whereas cases of sparse patterns of expression may contribute to the unique electrophysiological signatures of distinct cell populations. These observations lay the groundwork for manipulations to determine how ion channels contribute to the neuronal excitability properties of vocal learning systems.


Asunto(s)
Pinzones/genética , Pinzones/fisiología , Genómica , Aprendizaje , Neuronas/citología , Vocalización Animal/fisiología , Animales , Encéfalo/citología , Encéfalo/metabolismo , Encéfalo/fisiología , Canales Iónicos/genética , Familia de Multigenes/genética , Sintenía
10.
J Comp Neurol ; 527(15): 2512-2556, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30919954

RESUMEN

The arcopallium, a key avian forebrain region, receives inputs from numerous brain areas and is a major source of descending sensory and motor projections. While there is evidence of arcopallial subdivisions, the internal organization or the arcopallium is not well understood. The arcopallium is also considered the avian homologue of mammalian deep cortical layers and/or amygdalar subdivisions, but one-to-one correspondences are controversial. Here we present a molecular characterization of the arcopallium in the zebra finch, a passerine songbird species and a major model organism for vocal learning studies. Based on in situ hybridization for arcopallial-expressed transcripts (AQP1, C1QL3, CBLN2, CNTN4, CYP19A1, ESR1/2, FEZF2, MGP, NECAB2, PCP4, PVALB, SCN3B, SCUBE1, ZBTB20, and others) in comparison with cytoarchitectonic features, we have defined 20 distinct regions that can be grouped into six major domains (anterior, posterior, dorsal, ventral, medial, and intermediate arcopallium, respectively; AA, AP, AD, AV, AM, and AI). The data also help to establish the arcopallium as primarily pallial, support a unique topography of the arcopallium in passerines, highlight similarities between the vocal robust nucleus of the arcopallium (RA) and AI, and provide insights into the similarities and differences of cortical and amygdalar regions between birds and mammals. We also propose the use of AMV (instead of nucleus taenia/TnA), AMD, AD, and AI as initial steps toward a universal arcopallial nomenclature. Besides clarifying the internal organization of the arcopallium, the data provide a coherent basis for further functional and comparative studies of this complex avian brain region.


Asunto(s)
Pinzones/anatomía & histología , Vías Nerviosas/anatomía & histología , Prosencéfalo/anatomía & histología , Animales
11.
Sci Rep ; 9(1): 816, 2019 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-30692609

RESUMEN

Songbirds communicate through learned vocalizations, using a forebrain circuit with convergent similarity to vocal-control circuitry in humans. This circuit is incomplete in female zebra finches, hence only males sing. We show that the UTS2B gene, encoding Urotensin-Related Peptide (URP), is uniquely expressed in a key pre-motor vocal nucleus (HVC), and specifically marks the neurons that form a male-specific projection that encodes timing features of learned song. UTS2B-expressing cells appear early in males, prior to projection formation, but are not observed in the female nucleus. We find no expression evidence for canonical receptors within the vocal circuit, suggesting either signalling to other brain regions via diffusion or transduction through other receptor systems. Urotensins have not previously been implicated in vocal control, but we find an annotation in Allen Human Brain Atlas of increased UTS2B expression within portions of human inferior frontal cortex implicated in human speech and singing. Thus UTS2B (URP) is a novel neural marker that may have conserved functions for vocal communication.


Asunto(s)
Prosencéfalo/metabolismo , Pájaros Cantores/fisiología , Urotensinas/genética , Animales , Proteínas Aviares/genética , Proteínas Aviares/metabolismo , Evolución Molecular , Regulación del Desarrollo de la Expresión Génica , Masculino , Caracteres Sexuales , Pájaros Cantores/genética , Urotensinas/metabolismo , Vocalización Animal
12.
BMC Res Notes ; 11(1): 309, 2018 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-29776372

RESUMEN

OBJECTIVES: Zebra finches are a major model organism for investigating mechanisms of vocal learning, a trait that enables spoken language in humans. The development of cDNA collections with expressed sequence tags (ESTs) and microarrays has allowed for extensive molecular characterizations of circuitry underlying vocal learning and production. However, poor database curation can lead to errors in transcriptome and bioinformatics analyses, limiting the impact of these resources. Here we used genomic alignments and synteny analysis for orthology verification to curate and reannotate ~ 35% of the oligonucleotides and corresponding ESTs/cDNAs that make-up Agilent microarrays for gene expression analysis in finches. DATA DESCRIPTION: We found that: (1) 5475 out of 43,084 oligos (a) failed to align to the zebra finch genome, (b) aligned to multiple loci, or (c) aligned to Chr_un only, and thus need to be flagged until a better genome assembly is available, or (d) reflect cloning artifacts; (2) Out of 9635 valid oligos examined further, 3120 were incorrectly named, including 1533 with no known orthologs; and (3) 2635 oligos required name update. The resulting curated dataset provides a reference for correcting gene identification errors in previous finch microarrays studies, and avoiding such errors in future studies.


Asunto(s)
Etiquetas de Secuencia Expresada , Pinzones/genética , Perfilación de la Expresión Génica/métodos , Expresión Génica , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Vocalización Animal , Animales
13.
BMC Genomics ; 19(1): 231, 2018 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-29614959

RESUMEN

BACKGROUND: The ability to imitate the vocalizations of other organisms, a trait known as vocal learning, is shared by only a few organisms, including humans, where it subserves the acquisition of speech and language, and 3 groups of birds. In songbirds, vocal learning requires the coordinated activity of a set of specialized brain nuclei referred to as the song control system. Recent efforts have revealed some of the genes that are expressed in these vocal nuclei, however a thorough characterization of the transcriptional specializations of this system is still missing. We conducted a rigorous and comprehensive analysis of microarrays, and conducted a separate analysis of 380 genes by in situ hybridizations in order to identify molecular specializations of the major nuclei of the song system of zebra finches (Taeniopygia guttata), a songbird species. RESULTS: Our efforts identified more than 3300 genes that are differentially regulated in one or more vocal nuclei of adult male birds compared to the adjacent brain regions. Bioinformatics analyses provided insights into the possible involvement of these genes in molecular pathways such as cellular morphogenesis, intrinsic cellular excitability, neurotransmission and neuromodulation, axonal guidance and cela-to-cell interactions, and cell survival, which are known to strongly influence the functional properties of the song system. Moreover, an in-depth analysis of specific gene families with known involvement in regulating the development and physiological properties of neuronal circuits provides further insights into possible modulators of the song system. CONCLUSION: Our study represents one of the most comprehensive molecular characterizations of a brain circuit that evolved to facilitate a learned behavior in a vertebrate. The data provide novel insights into possible molecular determinants of the functional properties of the song control circuitry. It also provides lists of compelling targets for pharmacological and genetic manipulations to elucidate the molecular regulation of song behavior and vocal learning.


Asunto(s)
Proteínas Aviares/genética , Pinzones/genética , Perfilación de la Expresión Génica/veterinaria , Vocalización Animal/fisiología , Animales , Encéfalo/fisiología , Pinzones/fisiología , Regulación de la Expresión Génica , Aprendizaje , Masculino , Familia de Multigenes , Análisis de Secuencia por Matrices de Oligonucleótidos/veterinaria
14.
Genome Biol ; 18(1): 113, 2017 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-28615074

RESUMEN

While the analysis of Bornelöv et al. is informative, they provide evidence for the existence of only 3% of the reported avian missing genes set, and thus do not significantly challenge our main findings that specific groups of syntenic protein-coding genes are missing in birds.This is a response to the Correspondence article: https://www.dx.doi.org/10.1186/s13059-017-1231-1.


Asunto(s)
Aves , Proteínas , Animales , Proteínas/genética , Sintenía
15.
G3 (Bethesda) ; 7(1): 109-117, 2017 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-27852011

RESUMEN

The importance of the Gallus gallus (chicken) as a model organism and agricultural animal merits a continuation of sequence assembly improvement efforts. We present a new version of the chicken genome assembly (Gallus_gallus-5.0; GCA_000002315.3), built from combined long single molecule sequencing technology, finished BACs, and improved physical maps. In overall assembled bases, we see a gain of 183 Mb, including 16.4 Mb in placed chromosomes with a corresponding gain in the percentage of intact repeat elements characterized. Of the 1.21 Gb genome, we include three previously missing autosomes, GGA30, 31, and 33, and improve sequence contig length 10-fold over the previous Gallus_gallus-4.0. Despite the significant base representation improvements made, 138 Mb of sequence is not yet located to chromosomes. When annotated for gene content, Gallus_gallus-5.0 shows an increase of 4679 annotated genes (2768 noncoding and 1911 protein-coding) over those in Gallus_gallus-4.0. We also revisited the question of what genes are missing in the avian lineage, as assessed by the highest quality avian genome assembly to date, and found that a large fraction of the original set of missing genes are still absent in sequenced bird species. Finally, our new data support a detailed map of MHC-B, encompassing two segments: one with a highly stable gene copy number and another in which the gene copy number is highly variable. The chicken model has been a critical resource for many other fields of study, and this new reference assembly will substantially further these efforts.


Asunto(s)
Pollos/genética , Genoma/genética , Anotación de Secuencia Molecular , Análisis de Secuencia de ADN , Animales , Cromosomas Artificiales Bacterianos , Biología Computacional , Mapeo Contig
16.
Soft Matter ; 12(39): 8112-8123, 2016 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-27722747

RESUMEN

In this study we investigate the structure-mechanical property relationships for nanostructured ionomer films containing ionically crosslinked core-shell polymer nanoparticles based on poly(n-butyl acrylate) (PBA). Whilst nanostructured ionomer films of core-shell nanoparticles have been previously shown to have good ductility [Soft Matter, 2014, 10, 4725], the modulus values were modest. Here, we used BA as the primary monomer to construct core-shell nanoparticles that provided films containing nanostructured polymers with much higher glass transition temperature (Tg) values. The core-shell nanoparticles were synthesised using BA, acrylonitrile (AN), methacrylic acid (MAA) and 1,4-butanediol diacrylate (BDDA). Nanostructured ionomer films were prepared by casting aqueous core-shell nanoparticle dispersions in which the shell -COOH groups were neutralised with KOH and ZnO. The film mechanical properties were studied using dynamic mechanical analysis and tensile stress-strain measurements. The use of BA-based nanoparticles increased the Tg values to close to room temperature which caused a strong dependence of the film mechanical properties on the AN content and extent of neutralisation of the -COOH groups. The Young's modulus values for the films ranged from 1.0 to 86.0 MPa. The latter is the highest modulus reported for cast films of nanostructured ionomer films prepared from core-shell nanoparticles. The films had good ductility with strain-at-break values of at least 200%. The mechanical properties of the films were successfully modelled using the isostrain model. From comparison with an earlier butadiene-based system this study demonstrates that the nature of the primary monomer used to construct the nanoparticles can profoundly change the film mechanical properties. The aqueous nanoparticle dispersion approach used here provides a simple and versatile method to prepare high modulus elastomer films with tuneable mechanical properties.

17.
Front Cell Neurosci ; 9: 471, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26696830

RESUMEN

Central neurons express a variety of neuronal types and ion channels that promote firing heterogeneity among their distinct neuronal populations. Action potential (AP) phasic firing, produced by low-threshold voltage-activated potassium currents (VAKCs), is commonly observed in mammalian brainstem neurons involved in the processing of temporal properties of the acoustic information. The avian caudomedial nidopallium (NCM) is an auditory area analogous to portions of the mammalian auditory cortex that is involved in the perceptual discrimination and memorization of birdsong and shows complex responses to auditory stimuli We performed in vitro whole-cell patch-clamp recordings in brain slices from adult zebra finches (Taeniopygia guttata) and observed that half of NCM neurons fire APs phasically in response to membrane depolarizations, while the rest fire transiently or tonically. Phasic neurons fired APs faster and with more temporal precision than tonic and transient neurons. These neurons had similar membrane resting potentials, but phasic neurons had lower membrane input resistance and time constant. Surprisingly phasic neurons did not express low-threshold VAKCs, which curtailed firing in phasic mammalian brainstem neurons, having similar VAKCs to other NCM neurons. The phasic firing was determined not by VAKCs, but by the potassium background leak conductances, which was more prominently expressed in phasic neurons, a result corroborated by pharmacological, dynamic-clamp, and modeling experiments. These results reveal a new role for leak currents in generating firing diversity in central neurons.

18.
Genome Biol ; 16: 165, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-26281829

RESUMEN

Hron et al. provide transcriptome evidence that three (1.1 %) of the 274 genes reported by Lovell et al. as missing in birds may actually be 'hidden' as a result of high GC content. Although this factor may explain some gene absences from genomic assemblies, we believe it is insufficient to account for the extensive syntenic losses described in Lovell et al. Please see related article: www.dx.doi.org/10.1186/s13059-015-0724-z.


Asunto(s)
Proteínas Aviares/genética , Aves/clasificación , Aves/genética , Genómica/métodos , Animales , Humanos
19.
Science ; 346(6215): 1320-31, 2014 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-25504713

RESUMEN

To better determine the history of modern birds, we performed a genome-scale phylogenetic analysis of 48 species representing all orders of Neoaves using phylogenomic methods created to handle genome-scale data. We recovered a highly resolved tree that confirms previously controversial sister or close relationships. We identified the first divergence in Neoaves, two groups we named Passerea and Columbea, representing independent lineages of diverse and convergently evolved land and water bird species. Among Passerea, we infer the common ancestor of core landbirds to have been an apex predator and confirm independent gains of vocal learning. Among Columbea, we identify pigeons and flamingoes as belonging to sister clades. Even with whole genomes, some of the earliest branches in Neoaves proved challenging to resolve, which was best explained by massive protein-coding sequence convergence and high levels of incomplete lineage sorting that occurred during a rapid radiation after the Cretaceous-Paleogene mass extinction event about 66 million years ago.


Asunto(s)
Aves/genética , Genoma , Filogenia , Animales , Proteínas Aviares/genética , Secuencia de Bases , Evolución Biológica , Aves/clasificación , Elementos Transponibles de ADN , Genes , Especiación Genética , Mutación INDEL , Intrones , Análisis de Secuencia de ADN
20.
Science ; 346(6215): 1256846, 2014 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-25504733

RESUMEN

Song-learning birds and humans share independently evolved similarities in brain pathways for vocal learning that are essential for song and speech and are not found in most other species. Comparisons of brain transcriptomes of song-learning birds and humans relative to vocal nonlearners identified convergent gene expression specializations in specific song and speech brain regions of avian vocal learners and humans. The strongest shared profiles relate bird motor and striatal song-learning nuclei, respectively, with human laryngeal motor cortex and parts of the striatum that control speech production and learning. Most of the associated genes function in motor control and brain connectivity. Thus, convergent behavior and neural connectivity for a complex trait are associated with convergent specialized expression of multiple genes.


Asunto(s)
Encéfalo/fisiología , Pinzones/genética , Pinzones/fisiología , Regulación de la Expresión Génica , Aprendizaje , Habla , Transcriptoma , Vocalización Animal , Adulto , Animales , Aves/genética , Aves/fisiología , Encéfalo/anatomía & histología , Mapeo Encefálico , Cuerpo Estriado/anatomía & histología , Cuerpo Estriado/fisiología , Evolución Molecular , Humanos , Masculino , Corteza Motora/anatomía & histología , Corteza Motora/fisiología , Vías Nerviosas , Especificidad de la Especie , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA