Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Food Sci Nutr ; 9(10): 5335-5343, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34646505

RESUMEN

Quality and food safety are of paramount importance to the palm oil industry. In this work, we investigated the practicability of ethylene gas exogenous application on post-harvested oil palm fruit bunches to improve the crude palm oil (CPO) quality. The bunches were first exposed to ethylene gas for 24 hr to induce abscission of palm fruits from bunches. The detached fruits were then subjected to heat treatment, mechanical extraction, clarification and drying to produce CPO. Critical quality parameters of CPO produced, that is free fatty acid, deterioration of the bleachability index and triacylglycerol showed improvement with ethylene gas treatment. Contaminant content that is phosphorus, chloride, iron, and copper also showed a reduction in the CPO derived from ethylene-treated bunches. These findings corresponded with low levels of contaminants such as 3-monochloropropane-1,2-diol esters and glycidyl esters in refined oil. The implementation strategy and practicability of this method is herein proposed and discussed. Ethylene application not only improves the CPO quality, but could potentially enhance the process sustainability of palm oil mills.

2.
Microb Cell Fact ; 19(1): 179, 2020 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-32907579

RESUMEN

BACKGROUND: Sugars and triglycerides are common carbon sources for microorganisms. Nonetheless, a systematic comparative interpretation of metabolic changes upon vegetable oil or glucose as sole carbon source is still lacking. Selected fungi that can grow in acidic mineral salt media (MSM) with vegetable oil had been identified recently. Hence, this study aimed to investigate the overall metabolite changes of an omnipotent fungus and to reveal changes at central carbon metabolism corresponding to both carbon sources. RESULTS: Targeted and non-targeted metabolomics for both polar and semi-polar metabolites of Phialemonium curvatum AWO2 (DSM 23903) cultivated in MSM with palm oil (MSM-P) or glucose (MSM-G) as carbon sources were obtained. Targeted metabolomics on central carbon metabolism of tricarboxylic acid (TCA) cycle and glyoxylate cycle were analysed using LC-MS/MS-TripleQ and GC-MS, while untargeted metabolite profiling was performed using LC-MS/MS-QTOF followed by multivariate analysis. Targeted metabolomics analysis showed that glyoxylate pathway and TCA cycle were recruited at central carbon metabolism for triglyceride and glucose catabolism, respectively. Significant differences in organic acids concentration of about 4- to 8-fold were observed for citric acid, succinic acid, malic acid, and oxaloacetic acid. Correlation of organic acids concentration and key enzymes involved in the central carbon metabolism was further determined by enzymatic assays. On the other hand, the untargeted profiling revealed seven metabolites undergoing significant changes between MSM-P and MSM-G cultures. CONCLUSIONS: Overall, this study has provided insights on the understanding on the effect of triglycerides and sugar as carbon source in fungi global metabolic pathway, which might become important for future optimization of carbon flux engineering in fungi to improve organic acids production when vegetable oil is applied as the sole carbon source.


Asunto(s)
Ácidos/metabolismo , Ascomicetos/crecimiento & desarrollo , Ascomicetos/metabolismo , Glucosa/metabolismo , Metaboloma , Compuestos Orgánicos/metabolismo , Aceite de Palma/metabolismo , Lípidos/biosíntesis , Redes y Vías Metabólicas
3.
J Agric Food Chem ; 62(32): 8143-52, 2014 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-25032485

RESUMEN

Oil palm is one of the most productive oil-producing crops and can store up to 90% oil in its fruit mesocarp. Oil palm fruit is a sessile drupe consisting of a fleshy mesocarp from which palm oil is extracted. Biochemical changes in the mesocarp cell walls, polyamines, and hormones at different ripening stages of oil palm fruits were studied, and the relationship between the structural and the biochemical metabolism of oil palm fruits during ripening is discussed. Time-course analysis of the changes in expression of polyamines, hormones, and cell-wall-related genes and metabolites provided insights into the complex processes and interactions involved in fruit development. Overall, a strong reduction in auxin-responsive gene expression was observed from 18 to 22 weeks after pollination. High polyamine concentrations coincided with fruit enlargement during lipid accumulation and latter stages of maturation. The trend of abscisic acid (ABA) concentration was concordant with GA4 but opposite to the GA3 profile such that as ABA levels increase the resulting elevated ABA/GA3 ratio clearly coincides with maturation. Polygalacturonase, expansin, and actin gene expressions were also observed to increase during fruit maturation. The identification of the master regulators of these coordinated processes may allow screening for oil palm variants with altered ripening profiles.


Asunto(s)
Arecaceae/metabolismo , Pared Celular/metabolismo , Productos Agrícolas/metabolismo , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas/biosíntesis , Poliaminas/metabolismo , Ácido Abscísico/metabolismo , Actinas/genética , Actinas/metabolismo , Arecaceae/crecimiento & desarrollo , Pared Celular/enzimología , Productos Agrícolas/enzimología , Productos Agrícolas/crecimiento & desarrollo , Cruzamientos Genéticos , Frutas/crecimiento & desarrollo , Giberelinas/genética , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Metabolismo de los Lípidos , Malasia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polinización , Poligalacturonasa/genética , Poligalacturonasa/metabolismo , ARN Mensajero/metabolismo , ARN de Planta/metabolismo , Regulación hacia Arriba
4.
PLoS One ; 8(4): e61344, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23593468

RESUMEN

To better understand lipid biosynthesis in oil palm mesocarp, in particular the differences in gene regulation leading to and including de novo fatty acid biosynthesis, a multi-platform metabolomics technology was used to profile mesocarp metabolites during six critical stages of fruit development in comparatively high- and low-yielding oil palm populations. Significantly higher amino acid levels preceding lipid biosynthesis and nucleosides during lipid biosynthesis were observed in a higher yielding commercial palm population. Levels of metabolites involved in glycolysis revealed interesting divergence of flux towards glycerol-3-phosphate, while carbon utilization differences in the TCA cycle were proven by an increase in malic acid/citric acid ratio. Apart from insights into the regulation of enhanced lipid production in oil palm, these results provide potentially useful metabolite yield markers and genes of interest for use in breeding programmes.


Asunto(s)
Arecaceae/metabolismo , Frutas/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Lípidos/biosíntesis , Aminoácidos/metabolismo , Arecaceae/genética , Biomarcadores/metabolismo , Cruzamiento/métodos , Cromatografía Liquida , Ácido Cítrico/metabolismo , Frutas/crecimiento & desarrollo , Cromatografía de Gases y Espectrometría de Masas , Malatos/metabolismo , Metabolómica/métodos , Análisis de Componente Principal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...