RESUMEN
MYCN oncogene amplification is frequently observed in aggressive childhood neuroblastoma. Using an unbiased large-scale mutagenesis screen in neuroblastoma-prone transgenic mice, we identify a single germline point mutation in the transcriptional corepressor Runx1t1, which abolishes MYCN-driven tumorigenesis. This loss-of-function mutation disrupts a highly conserved zinc finger domain within Runx1t1. Deletion of one Runx1t1 allele in an independent Runx1t1 knockout mouse model is also sufficient to prevent MYCN-driven neuroblastoma development, and reverse ganglia hyperplasia, a known pre-requisite for tumorigenesis. Silencing RUNX1T1 in human neuroblastoma cells decreases colony formation in vitro, and inhibits tumor growth in vivo. Moreover, RUNX1T1 knockdown inhibits the viability of PAX3-FOXO1 fusion-driven rhabdomyosarcoma and MYC-driven small cell lung cancer cells. Despite the role of Runx1t1 in MYCN-driven tumorigenesis neither gene directly regulates the other. We show RUNX1T1 forms part of a transcriptional LSD1-CoREST3-HDAC repressive complex recruited by HAND2 to enhancer regions to regulate chromatin accessibility and cell-fate pathway genes.
Asunto(s)
Carcinogénesis , Proteína Proto-Oncogénica N-Myc , Neuroblastoma , Animales , Humanos , Ratones , Carcinogénesis/genética , Línea Celular Tumoral , Proteínas Co-Represoras/metabolismo , Proteínas Co-Represoras/genética , Regulación Neoplásica de la Expresión Génica , Histona Demetilasas/metabolismo , Histona Demetilasas/genética , Ratones Noqueados , Ratones Transgénicos , Proteína Proto-Oncogénica N-Myc/genética , Proteína Proto-Oncogénica N-Myc/metabolismo , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patología , Factores de Transcripción/metabolismo , Factores de Transcripción/genéticaRESUMEN
Chemokines are an important family of small proteins integral to leukocyte recruitment during inflammation. Dysregulation of the chemokine-chemokine receptor axis is implicated in many diseases, and both chemokines and their cognate receptors have been the targets of therapeutic development. Analysis of the antigen-binding regions of chemokine-binding nanobodies revealed a sequence motif suggestive of tyrosine sulfation. Given the well-established importance of post-translational tyrosine sulfation of receptors for chemokine affinity, it was hypothesized that the sulfation of these nanobodies may contribute to chemokine binding and selectivity. Four nanobodies (16C1, 9F1, 11B1, and 11F2) were expressed using amber codon suppression to incorporate tyrosine sulfation. The sulfated variant of 16C1 demonstrated significantly improved chemokine binding compared to the non-sulfated counterpart, while the other nanobodies displayed equipotent or reduced affinity upon sulfation. The ability of tyrosine sulfation to modulate chemokine binding, both positively and negatively, could be leveraged for chemokine-targeted sulfo-nanobody therapeutics in the future.
Asunto(s)
Quimiocinas , Anticuerpos de Dominio Único , Tirosina , Tirosina/metabolismo , Tirosina/química , Tirosina/análogos & derivados , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/metabolismo , Quimiocinas/metabolismo , Quimiocinas/química , Humanos , Unión Proteica , Sulfatos/metabolismo , Sulfatos/químicaRESUMEN
Recent technological advances have deepened our perception of cellular structure. However, most structural data doesn't originate from intact cells, limiting our understanding of cellular processes. Here, we discuss current and future developments that will bring us towards a structural picture of the cell. Electron cryotomography is the standard bearer, with its ability to provide in cellulo snapshots. Single-particle electron microscopy (of purified biomolecules and of complex mixtures) and covalent crosslinking combined with mass spectrometry also have significant roles to play, as do artificial intelligence algorithms in their many guises. To integrate these multiple approaches, data curation and standardisation will be critical - as is the need to expand efforts beyond our current protein-centric view to the other (macro)molecules that sustain life.
Asunto(s)
Microscopía por Crioelectrón , Microscopía por Crioelectrón/métodos , Humanos , Espectrometría de Masas/métodosRESUMEN
Chloroplast genes encoding photosynthesis-associated proteins are predominantly transcribed by the plastid-encoded RNA polymerase (PEP). PEP is a multi-subunit complex composed of plastid-encoded subunits similar to bacterial RNA polymerases (RNAPs) stably bound to a set of nuclear-encoded PEP-associated proteins (PAPs). PAPs are essential to PEP activity and chloroplast biogenesis, but their roles are poorly defined. Here, we present cryoelectron microscopy (cryo-EM) structures of native 21-subunit PEP and a PEP transcription elongation complex from white mustard (Sinapis alba). We identify that PAPs encase the core polymerase, forming extensive interactions that likely promote complex assembly and stability. During elongation, PAPs interact with DNA downstream of the transcription bubble and with the nascent mRNA. The models reveal details of the superoxide dismutase, lysine methyltransferase, thioredoxin, and amino acid ligase enzymes that are subunits of PEP. Collectively, these data provide a foundation for the mechanistic understanding of chloroplast transcription and its role in plant growth and adaptation.
Asunto(s)
ARN Polimerasas Dirigidas por ADN , Plastidios , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Microscopía por Crioelectrón , ARN Polimerasas Dirigidas por ADN/química , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/química , Plastidios/enzimología , Transcripción GenéticaRESUMEN
The development of effective antiviral compounds is essential for mitigating the effects of the COVID-19 pandemic. Entry of SARS-CoV-2 virions into host cells is mediated by the interaction between the viral spike (S) protein and membrane-bound angiotensin-converting enzyme 2 (ACE2) on the surface of epithelial cells. Inhibition of this viral protein-host protein interaction is an attractive avenue for the development of antiviral molecules with numerous spike-binding molecules generated to date. Herein, we describe an alternative approach to inhibit the spike-ACE2 interaction by targeting the spike-binding interface of human ACE2 via mRNA display. Two consecutive display selections were performed to direct cyclic peptide ligand binding toward the spike binding interface of ACE2. Through this process, potent cyclic peptide binders of human ACE2 (with affinities in the picomolar to nanomolar range) were identified, two of which neutralized SARS-CoV-2 entry. This work demonstrates the potential of targeting ACE2 for the generation of anti-SARS-CoV-2 therapeutics as well as broad spectrum antivirals for the treatment of SARS-like betacoronavirus infection.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Enzima Convertidora de Angiotensina 2/química , Péptidos Cíclicos/farmacología , Péptidos Cíclicos/metabolismo , Pandemias , Ligandos , Unión Proteica , Peptidil-Dipeptidasa A/química , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , Antivirales/farmacología , Antivirales/químicaRESUMEN
Bromodomains (BDs) regulate gene expression by recognizing protein motifs containing acetyllysine. Although originally characterized as histone-binding proteins, it has since become clear that these domains interact with other acetylated proteins, perhaps most prominently transcription factors. The likely transient nature and low stoichiometry of such modifications, however, has made it challenging to fully define the interactome of any given BD. To begin to address this knowledge gap in an unbiased manner, we carried out mRNA display screens against a BD-the N-terminal BD of BRD3-using peptide libraries that contained either one or two acetyllysine residues. We discovered peptides with very strong consensus sequences and with affinities that are significantly higher than typical BD-peptide interactions. X-ray crystal structures also revealed modes of binding that have not been seen with natural ligands. Intriguingly, however, our sequences are not found in the human proteome, perhaps suggesting that strong binders to BDs might have been selected against during evolution.
Asunto(s)
Proteoma , Factores de Transcripción , Humanos , Proteoma/metabolismo , Factores de Transcripción/metabolismo , Dominios Proteicos , Secuencias de Aminoácidos , Péptidos/metabolismo , Unión Proteica , AcetilaciónRESUMEN
Significant recent advances in structural biology, particularly in the field of cryoelectron microscopy, have dramatically expanded our ability to create structural models of proteins and protein complexes. However, many proteins remain refractory to these approaches because of their low abundance, low stability, or-in the case of complexes-simply not having yet been analyzed. Here, we demonstrate the power of using cross-linking mass spectrometry (XL-MS) for the high-throughput experimental assessment of the structures of proteins and protein complexes. This included those produced by high-resolution but in vitro experimental data, as well as in silico predictions based on amino acid sequence alone. We present the largest XL-MS dataset to date, describing 28,910 unique residue pairs captured across 4,084 unique human proteins and 2,110 unique protein-protein interactions. We show that models of proteins and their complexes predicted by AlphaFold2, and inspired and corroborated by the XL-MS data, offer opportunities to deeply mine the structural proteome and interactome and reveal mechanisms underlying protein structure and function.
Asunto(s)
Biología Molecular , Proteómica , Humanos , Microscopía por Crioelectrón , Proteómica/métodos , Espectrometría de Masas/métodos , Biología Molecular/métodos , Proteoma/química , Reactivos de Enlaces Cruzados/químicaRESUMEN
Although ACE2 is the primary receptor for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection, a systematic assessment of host factors that regulate binding to SARS-CoV-2 spike protein has not been described. Here, we use whole-genome CRISPR activation to identify host factors controlling cellular interactions with SARS-CoV-2. Our top hit was a TLR-related cell surface receptor called leucine-rich repeat-containing protein 15 (LRRC15). LRRC15 expression was sufficient to promote SARS-CoV-2 spike binding where they form a cell surface complex. LRRC15 mRNA is expressed in human collagen-producing lung myofibroblasts and LRRC15 protein is induced in severe Coronavirus Disease 2019 (COVID-19) infection where it can be found lining the airways. Mechanistically, LRRC15 does not itself support SARS-CoV-2 infection, but fibroblasts expressing LRRC15 can suppress both pseudotyped and authentic SARS-CoV-2 infection in trans. Moreover, LRRC15 expression in fibroblasts suppresses collagen production and promotes expression of IFIT, OAS, and MX-family antiviral factors. Overall, LRRC15 is a novel SARS-CoV-2 spike-binding receptor that can help control viral load and regulate antiviral and antifibrotic transcriptional programs in the context of COVID-19 infection.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , COVID-19/genética , Antivirales/farmacología , Enzima Convertidora de Angiotensina 2/metabolismo , Fibroblastos/metabolismo , Unión Proteica , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismoRESUMEN
The nucleosome-remodeling and deacetylase (NuRD) complex is an essential transcriptional regulator in all complex animals. All seven core subunits of the complex exist as multiple paralogs, raising the question of whether the complex might utilize paralog switching to achieve cell type-specific functions. We examine the evidence for this idea, making use of published quantitative proteomic data to dissect NuRD composition in 20 different tissues, as well as a large-scale CRISPR knockout screen carried out in >1000 human cancer cell lines. These data, together with recent reports, provide strong support for the idea that distinct permutations of the NuRD complex with tailored functions might regulate tissue-specific gene expression programs.
Asunto(s)
Nucleosomas , Proteómica , Animales , Humanos , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Línea CelularRESUMEN
CHD4 is an essential, widely conserved ATP-dependent translocase that is also a broad tumour dependency. In common with other SF2-family chromatin remodelling enzymes, it alters chromatin accessibility by repositioning histone octamers. Besides the helicase and adjacent tandem chromodomains and PHD domains, CHD4 features 1000 residues of N- and C-terminal sequence with unknown structure and function. We demonstrate that these regions regulate CHD4 activity through different mechanisms. An N-terminal intrinsically disordered region (IDR) promotes remodelling integrity in a manner that depends on the composition but not sequence of the IDR. The C-terminal region harbours an auto-inhibitory region that contacts the helicase domain. Auto-inhibition is relieved by a previously unrecognized C-terminal SANT-SLIDE domain split by ~150 residues of disordered sequence, most likely by binding of this domain to substrate DNA. Our data shed light on CHD4 regulation and reveal strong mechanistic commonality between CHD family members, as well as with ISWI-family remodellers.
Asunto(s)
Translocasas Mitocondriales de ADP y ATPRESUMEN
The nucleosome remodeling and deacetylase (NuRD) complex is a chromatin-modifying assembly that regulates gene expression and DNA damage repair. Despite its importance, limited structural information describing the complete NuRD complex is available and a detailed understanding of its mechanism is therefore lacking. Drawing on information from SEC-MALLS, DIA-MS, XLMS, negative-stain EM, X-ray crystallography, NMR spectroscopy, secondary structure predictions, and homology models, we applied Bayesian integrative structure determination to investigate the molecular architecture of three NuRD sub-complexes: MTA1-HDAC1-RBBP4, MTA1N -HDAC1-MBD3GATAD2CC , and MTA1-HDAC1-RBBP4-MBD3-GATAD2A [nucleosome deacetylase (NuDe)]. The integrative structures were corroborated by examining independent crosslinks, cryo-EM maps, biochemical assays, known cancer-associated mutations, and structure predictions from AlphaFold. The robustness of the models was assessed by jack-knifing. Localization of the full-length MBD3, which connects the deacetylase and chromatin remodeling modules in NuRD, has not previously been possible; our models indicate two different locations for MBD3, suggesting a mechanism by which MBD3 in the presence of GATAD2A asymmetrically bridges the two modules in NuRD. Further, our models uncovered three previously unrecognized subunit interfaces in NuDe: HDAC1C -MTA1BAH , MTA1BAH -MBD3MBD , and HDAC160-100 -MBD3MBD . Our approach also allowed us to localize regions of unknown structure, such as HDAC1C and MBD3IDR , thereby resulting in the most complete and robustly cross-validated structural characterization of these NuRD sub-complexes so far.
Asunto(s)
Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2 , Nucleosomas , Teorema de Bayes , Ensamble y Desensamble de Cromatina , Histona Desacetilasas/química , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismoRESUMEN
The RecQ-like helicase BLM cooperates with topoisomerase IIIα, RMI1, and RMI2 in a heterotetrameric complex (the "Bloom syndrome complex") for dissolution of double Holliday junctions, key intermediates in homologous recombination. Mutations in any component of the Bloom syndrome complex can cause genome instability and a highly cancer-prone disorder called Bloom syndrome. Some heterozygous carriers are also predisposed to breast cancer. To understand how the activities of BLM helicase and topoisomerase IIIα are coupled, we purified the active four-subunit complex. Chemical cross-linking and mass spectrometry revealed a unique architecture that links the helicase and topoisomerase domains. Using biochemical experiments, we demonstrated dimerization mediated by the N terminus of BLM with a 2:2:2:2 stoichiometry within the Bloom syndrome complex. We identified mutations that independently abrogate dimerization or association of BLM with RMI1, and we show that both are dysfunctional for dissolution using in vitro assays and cause genome instability and synthetic lethal interactions with GEN1/MUS81 in cells. Truncated BLM can also inhibit the activity of full-length BLM in mixed dimers, suggesting a putative mechanism of dominant-negative action in carriers of BLM truncation alleles. Our results identify critical molecular determinants of Bloom syndrome complex assembly required for double Holliday junction dissolution and maintenance of genome stability.
Asunto(s)
Síndrome de Bloom/genética , ADN Cruciforme/genética , Inestabilidad Genómica/genética , Alelos , Proteínas Portadoras/genética , Línea Celular , ADN-Topoisomerasas de Tipo I/genética , Humanos , Mutación/genética , Unión Proteica/genética , RecQ Helicasas/genética , Recombinación Genética/genética , SolubilidadRESUMEN
The combination of four proteins and their paralogues including MBD2/3, GATAD2A/B, CDK2AP1 and CHD3/4/5, which we refer to as the MGCC module, form the chromatin remodelling module of the nucleosome remodelling and deacetylase (NuRD) complex. To date, mechanisms by which the MGCC module acquires paralogue-specific function and specificity have not been addressed. Understanding the protein-protein interaction (PPI) network of the MGCC subunits is essential for defining underlying mechanisms of gene regulation. Therefore, using pulldown followed by mass spectrometry analysis (PD-MS), we report a proteome-wide interaction network of the MGCC module in a paralogue-specific manner. Our data also demonstrate that the disordered C-terminal region of CHD3/4/5 is a gateway to incorporate remodelling activity into both ChAHP (CHD4, ADNP, HP1γ) and NuRD complexes in a mutually exclusive manner. We define a short aggregation-prone region (APR) within the C-terminal segment of GATAD2B that is essential for the interaction of CHD4 and CDK2AP1 with the NuRD complex. Finally, we also report an association of CDK2AP1 with the nuclear receptor co-repressor (NCOR) complex. Overall, this study provides insight into the possible mechanisms through which the MGCC module can achieve specificity and diverse biological functions.
Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Mapas de Interacción de Proteínas/genética , Proteoma/genética , ADN Helicasas/genética , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica , Humanos , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/ultraestructura , Complejos Multiproteicos/genética , Nucleosomas/genética , Nucleosomas/ultraestructura , Proteínas Represoras/genética , Proteínas Supresoras de Tumor/genéticaRESUMEN
Global control of COVID-19 requires broadly accessible vaccines that are effective against SARS-CoV-2 variants. In this report, we exploit the immunostimulatory properties of bacille Calmette-Guérin (BCG), the existing tuberculosis vaccine, to deliver a vaccination regimen with potent SARS-CoV-2-specific protective immunity. Combination of BCG with a stabilised, trimeric form of SARS-CoV-2 spike antigen promoted rapid development of virus-specific IgG antibodies in the blood of vaccinated mice, that was further augmented by the addition of alum. This vaccine formulation, BCG:CoVac, induced high-titre SARS-CoV-2 neutralising antibodies (NAbs) and Th1-biased cytokine release by vaccine-specific T cells, which correlated with the early emergence of T follicular helper cells in local lymph nodes and heightened levels of antigen-specific plasma B cells after vaccination. Vaccination of K18-hACE2 mice with a single dose of BCG:CoVac almost completely abrogated disease after SARS-CoV-2 challenge, with minimal inflammation and no detectable virus in the lungs of infected animals. Boosting BCG:CoVac-primed mice with a heterologous vaccine further increased SARS-CoV-2-specific antibody responses, which effectively neutralised B.1.1.7 and B.1.351 SARS-CoV-2 variants of concern. These findings demonstrate the potential for BCG-based vaccination to protect against major SARS-CoV-2 variants circulating globally.
RESUMEN
Juvenile hormone (JH) plays vital roles in insect reproduction, development, and in many aspects of physiology. JH primarily acts at the gene-regulatory level through interaction with an intracellular receptor (JH receptor [JHR]), a ligand-activated complex of transcription factors consisting of the JH-binding protein methoprene-tolerant (MET) and its partner taiman (TAI). Initial studies indicated significance of post-transcriptional phosphorylation, subunit assembly, and nucleocytoplasmic transport of JHR in JH signaling. However, our knowledge of JHR regulation at the protein level remains rudimentary, partly because of the difficulty of obtaining purified and functional JHR proteins. Here, we present a method for high-yield expression and purification of JHR complexes from two insect species, the beetle T. castaneum and the mosquito Aedes aegypti. Recombinant JHR subunits from each species were coexpressed in an insect cell line using a baculovirus system. MET-TAI complexes were purified through affinity chromatography and anion exchange columns to yield proteins capable of binding both the hormonal ligand (JH III) and DNA bearing cognate JH-response elements. We further examined the beetle JHR complex in greater detail. Biochemical analyses and MS confirmed that T. castaneum JHR was a 1:1 heterodimer consisting of MET and Taiman proteins, stabilized by the JHR agonist ligand methoprene. Phosphoproteomics uncovered multiple phosphorylation sites in the MET protein, some of which were induced by methoprene treatment. Finally, we report a functional bipartite nuclear localization signal, straddled by phosphorylated residues, within the disordered C-terminal region of MET. Our present characterization of the recombinant JHR is an initial step toward understanding JHR structure and function.
Asunto(s)
Aedes/metabolismo , Proteínas de Insectos/metabolismo , Procesamiento Proteico-Postraduccional , Receptores de Superficie Celular/metabolismo , Tribolium/metabolismo , Aedes/genética , Animales , Proteínas de Insectos/genética , Hormonas Juveniles/metabolismo , Fosforilación , Receptores de Superficie Celular/genética , Células Sf9 , Spodoptera , Tribolium/genéticaRESUMEN
Protein interactions underlie most molecular events in biology. Many methods have been developed to identify protein partners, to measure the affinity with which these biomolecules interact and to characterise the structures of the complexes. Each approach has its own advantages and limitations, and it can be difficult for the newcomer to determine which methodology would best suit their system. This review provides an overview of many of the techniques most widely used to identify protein partners, assess stoichiometry and binding affinity, and determine low-resolution models for complexes. Key methods covered include: yeast two-hybrid analysis, affinity purification mass spectrometry and proximity labelling to identify partners; size-exclusion chromatography, scattering methods, native mass spectrometry and analytical ultracentrifugation to estimate stoichiometry; isothermal titration calorimetry, biosensors and fluorometric methods (including microscale thermophoresis, anisotropy/polarisation, resonance energy transfer, AlphaScreen, and differential scanning fluorimetry) to measure binding affinity; and crosslinking and hydrogen-deuterium exchange mass spectrometry to probe the structure of complexes.
Asunto(s)
Proteínas , Cromatografía de Afinidad , Espectrometría de MasasRESUMEN
The COVID-19 pandemic, caused by SARS-CoV-2, has led to substantial morbidity, mortality, and disruption globally. Cellular entry of SARS-CoV-2 is mediated by the viral spike protein, and affinity ligands to this surface protein have the potential for applications as antivirals and diagnostic reagents. Here, we describe the affinity selection of cyclic peptide ligands to the SARS-CoV-2 spike protein receptor binding domain (RBD) from three distinct libraries (in excess of a trillion molecules each) by mRNA display. We identified six high affinity molecules with dissociation constants (K D) in the nanomolar range (15-550 nM) to the RBD. The highest affinity ligand could be used as an affinity reagent to detect the spike protein in solution by ELISA, and the cocrystal structure of this molecule bound to the RBD demonstrated that it binds to a cryptic binding site, displacing a ß-strand near the C-terminus. Our findings provide key mechanistic insight into the binding of peptide ligands to the SARS-CoV-2 spike RBD, and the ligands discovered in this work may find future use as reagents for diagnostic applications.
RESUMEN
Almost all eukaryotic proteins receive diverse post-translational modifications (PTMs) that modulate protein activity. Many histone PTMs are well characterized, heavily influence gene regulation, and are often predictors of distinct transcriptional programs. Although our understanding of the histone PTM network has matured, much is yet to be understood about the roles of transcription factor (TF) PTMs, which might well represent a similarly complex and dynamic network of functional regulation. Members of the bromodomain and extra-terminal domain (BET) family of proteins recognize acetyllysine residues and relay the signals encoded by these modifications. Here, we have investigated the acetylation dependence of several functionally relevant BET-TF interactions in vitro using surface plasmon resonance, nuclear magnetic resonance, and X-ray crystallography. We show that motifs known to be acetylated in TFs E2F1 and MyoD1 can interact with all bromodomains of BRD2, BRD3, and BRD4. The interactions are dependent on diacetylation of the motifs and show a preference for the first BET bromodomain. Structural mapping of the interactions confirms a conserved mode of binding for the two TFs to the acetyllysine binding pocket of the BET bromodomains, mimicking that of other already established functionally important histone- and TF-BET interactions. We also examined a motif from the TF RelA that is known to be acetylated but were unable to observe any interaction, regardless of the acetylation state of the sequence. Our findings overall advance our understanding of BET-TF interactions and suggest a physical link between the important diacetylated motifs found in E2F1 and MyoD1 and the BET-family proteins.
Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Factor de Transcripción E2F1/metabolismo , Proteína MioD/metabolismo , Factores de Transcripción/metabolismo , Acetilación , Proteínas de Ciclo Celular/química , Cristalografía por Rayos X , Factor de Transcripción E2F1/química , Histonas/química , Humanos , Lisina/química , Modelos Moleculares , Proteína MioD/química , Conformación Proteica , Dominios Proteicos , Procesamiento Proteico-Postraduccional , Factores de Transcripción/químicaRESUMEN
Chemical modifications of histone tails influence genome accessibility and the transcriptional state of eukaryotic cells. Lysine acetylation is one of the most common modifications and acetyllysine-binding bromodomains (BDs) provide a means for acetyllysine marks to be translated into meaningful cellular responses. Here, we have investigated the mechanism underlying the reported association between the Bromodomain and Extra Terminal (BET) family of BD proteins and the essential histone variant H2A.Z. We use NMR spectroscopy to demonstrate a physical interaction between the N-terminal tail of H2A.Z and the BDs of BRD2, BRD3, and BRD4, and show that the interaction is dependent on lysine acetylation in H2A.Z. The BDs preferentially engage a diacetylated H2A.Z-K4acK7ac motif that is reminiscent of sequences found in other biologically important BET BD target proteins, including histones and transcription factors. A H2A.Z-K7acK11ac motif can also bind BET BDs-with a preference for the second BD of each protein. Chemical shift perturbation mapping of the interactions, together with an X-ray crystal structure of BRD2-BD1 bound to H2A.Z-K4acK7ac, shows that H2A.Z binds the canonical AcK binding pocket of the BDs. This mechanism mirrors the conserved binding mode that is unique to the BET BDs, in which two acetylation marks are read simultaneously by a single BD. Our findings provide structural corroboration of biochemical and cell biological data that link H2A.Z and BET-family proteins, suggesting that the function of H2A.Z is enacted through interactions with these chromatin readers.
Asunto(s)
Proteínas de Ciclo Celular/química , Histonas/química , Factores de Transcripción/química , Acetilación , Cristalografía por Rayos X , Humanos , Unión Proteica , Dominios Proteicos , Relación Estructura-ActividadRESUMEN
The nucleosome remodeling and deacetylase (NuRD) complex is essential for metazoan development but has been refractory to biochemical analysis. We present an integrated analysis of the native mammalian NuRD complex, combining quantitative mass spectrometry, cross-linking, protein biochemistry, and electron microscopy to define the architecture of the complex. NuRD is built from a 2:2:4 (MTA, HDAC, and RBBP) deacetylase module and a 1:1:1 (MBD, GATAD2, and Chromodomain-Helicase-DNA-binding [CHD]) remodeling module, and the complex displays considerable structural dynamics. The enigmatic GATAD2 controls the asymmetry of the complex and directly recruits the CHD remodeler. The MTA-MBD interaction acts as a point of functional switching, with the transcriptional regulator PWWP2A competing with MBD for binding to the MTA-HDAC-RBBP subcomplex. Overall, our data address the long-running controversy over NuRD stoichiometry, provide imaging of the mammalian NuRD complex, and establish the biochemical mechanism by which PWWP2A can regulate NuRD composition.