Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
Am J Bot ; : e16402, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39243191

RESUMEN

PREMISE: A key goal of evolutionary biologists is to understand how and why genetic variation is partitioned within species. In the yellow monkeyflower, Mimulus guttatus (syn. Erythranthe guttata), coastal perennial populations constitute a single genetically and morphologically differentiated ecotype compared to inland M. guttatus populations. While the coastal ecotype's distinctiveness has now been well documented, there is also environmental variation across the ecotype's range that could drive more continuous differentiation among its component populations. METHODS: Based on previous observations of a potential cline within this ecotype, we quantified plant height, among other traits, across coastal perennial accessions from 74 populations in a greenhouse common garden experiment. To evaluate potential drivers of the relationship between trait variation and latitude, we regressed height against multiple climatic factors, including temperature, precipitation, and coastal wind speeds. We also accounted for exposure to the open ocean in all analyses. RESULTS: Multiple traits were correlated with latitude of origin, but none more than plant height. Height was negatively correlated with latitude, and plants directly exposed to the open ocean were shorter than those protected from coastal winds. Further analyses revealed that height was correlated with climatic factors (precipitation, temperature, and wind speeds) that were autocorrelated with latitude. We hypothesize that one or more of these climatic factors drove the evolution of latitudinal clinal variation within the coastal ecotype. CONCLUSIONS: Overall, our study illustrates the complexity of how the distribution of environmental variation can simultaneously drive the evolution of both distinct ecotypes and continuous clines within those ecotypes.

2.
G3 (Bethesda) ; 14(10)2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39028116

RESUMEN

Switchgrass is a potential crop for bioenergy or carbon capture schemes, but further yield improvements through selective breeding are needed to encourage commercialization. To identify promising switchgrass germplasm for future breeding efforts, we conducted multisite and multitrait genomic prediction with a diversity panel of 630 genotypes from 4 switchgrass subpopulations (Gulf, Midwest, Coastal, and Texas), which were measured for spaced plant biomass yield across 10 sites. Our study focused on the use of genomic prediction to share information among traits and environments. Specifically, we evaluated the predictive ability of cross-validation (CV) schemes using only genetic data and the training set (cross-validation 1: CV1), a subset of the sites (cross-validation 2: CV2), and/or with 2 yield surrogates (flowering time and fall plant height). We found that genotype-by-environment interactions were largely due to the north-south distribution of sites. The genetic correlations between the yield surrogates and the biomass yield were generally positive (mean height r = 0.85; mean flowering time r = 0.45) and did not vary due to subpopulation or growing region (North, Middle, or South). Genomic prediction models had CV predictive abilities of -0.02 for individuals using only genetic data (CV1), but 0.55, 0.69, 0.76, 0.81, and 0.84 for individuals with biomass performance data from 1, 2, 3, 4, and 5 sites included in the training data (CV2), respectively. To simulate a resource-limited breeding program, we determined the predictive ability of models provided with the following: 1 site observation of flowering time (0.39); 1 site observation of flowering time and fall height (0.51); 1 site observation of fall height (0.52); 1 site observation of biomass (0.55); and 5 site observations of biomass yield (0.84). The ability to share information at a regional scale is very encouraging, but further research is required to accurately translate spaced plant biomass to commercial-scale sward biomass performance.


Asunto(s)
Interacción Gen-Ambiente , Genoma de Planta , Genotipo , Panicum , Panicum/genética , Genómica/métodos , Biomasa , Fenotipo , Carácter Cuantitativo Heredable , Modelos Genéticos
3.
Nanotoxicology ; 18(1): 69-86, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38420937

RESUMEN

In the lung, carcinogenesis is a multi-stage process that includes initiation by a genotoxic agent, promotion that expands the population of cells with damaged DNA to form a tumor, and progression from benign to malignant neoplasms. We have previously shown that Mitsui-7, a long and rigid multi-walled carbon nanotube (MWCNT), promotes pulmonary carcinogenesis in a mouse model. To investigate the potential exposure threshold and dose-response for tumor promotion by this MWCNT, 3-methylcholanthrene (MC) initiated (10 µg/g, i.p., once) or vehicle (corn oil) treated B6C3F1 mice were exposed by inhalation to filtered air or MWCNT (5 mg/m3) for 5 h/day for 0, 2, 5, or 10 days and were followed for 17 months post-exposure for evidence of lung tumors. Pulmonary neoplasia incidence in MC-initiated mice significantly increased with each MWCNT exposure duration. Exposure to either MC or MWCNT alone did not affect pulmonary neoplasia incidence compared with vehicle controls. Lung tumor multiplicity in MC-initiated mice also significantly increased with each MWCNT exposure duration. Thus, a significantly higher lung tumor multiplicity was observed after a 10-day MWCNT exposure than following a 2-day exposure. Both bronchioloalveolar adenoma and bronchioloalveolar adenocarcinoma multiplicity in MC-initiated mice were significantly increased following 5- and 10-day MWCNT exposure, while a 2-day MWCNT exposure in MC-initiated mice significantly increased the multiplicity of adenomas but not adenocarcinomas. In this study, even the lowest MWCNT exposure promoted lung tumors in MC-initiated mice. Our findings indicate that exposure to this MWCNT strongly promotes pulmonary carcinogenesis.


Asunto(s)
Neoplasias Pulmonares , Pulmón , Ratones , Animales , Pulmón/patología , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/patología , Ratones Endogámicos , Transformación Celular Neoplásica , Carcinogénesis/inducido químicamente , Carcinogénesis/patología , Exposición por Inhalación , Ratones Endogámicos C57BL
4.
Am J Bot ; 110(12): e16265, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38102863

RESUMEN

PREMISE: Increased aridity and drought associated with climate change are exerting unprecedented selection pressures on plant populations. Whether populations can rapidly adapt, and which life history traits might confer increased fitness under drought, remain outstanding questions. METHODS: We utilized a resurrection ecology approach, leveraging dormant seeds from herbarium collections to assess whether populations of Plantago patagonica from the semi-arid Colorado Plateau have rapidly evolved in response to approximately ten years of intense drought in the region. We quantified multiple traits associated with drought escape and drought resistance and assessed the survival of ancestors and descendants under simulated drought. RESULTS: Descendant populations displayed a significant shift in resource allocation, in which they invested less in reproductive tissues and relatively more in both above- and below-ground vegetative tissues. Plants with greater leaf biomass survived longer under terminal drought; moreover, even after accounting for the effect of increased leaf biomass, descendant seedlings survived drought longer than their ancestors. CONCLUSIONS: Our results document rapid adaptive evolution in response to climate change in a selfing annual and suggest that shifts in tissue allocation strategies may underlie adaptive responses to drought in arid or semi-arid environments. This work also illustrates a novel approach, documenting that under specific circumstances, seeds from herbarium specimens may provide an untapped source of dormant propagules for future resurrection experiments.


Asunto(s)
Resistencia a la Sequía , Rasgos de la Historia de Vida , Adaptación Fisiológica , Sequías , Plantas , Semillas
6.
Am J Bot ; 110(11): e16250, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37812737

RESUMEN

PREMISE: In 1879, Dr. William Beal buried 20 glass bottles filled with seeds and sand at a single site at Michigan State University. The goal of the experiment was to understand seed longevity in the soil, a topic of general importance in ecology, restoration, conservation, and agriculture, by periodically assaying germinability of these seeds over 100 years. The interval between germination assays has been extended and the experiment will now end after 221 years, in 2100. METHODS: We dug up the 16th bottle in April 2021 and attempted to germinate the 141-year-old seeds it contained. We grew germinants to maturity and identified these to species by vegetative and reproductive phenotypes. For the first time in the history of this experiment, genomic DNA was sequenced to confirm species identities. RESULTS: Twenty seeds germinated over the 244-day assay. Eight germinated in the first 11 days. All 20 belonged to the Verbascum genus: Nineteen were V. blattaria according to phenotype and ITS2 genotype; and one had a hybrid V. blattaria × V. thapsus phenotype and ITS2 genotype. In total, 20/50 (40%) of the original Verbascum seeds in the bottle germinated in year 141. CONCLUSIONS: While most species in the Beal experiment lost all seed viability in the first 60 years, a high percentage of Verbascum seeds can still germinate after 141 years in the soil. Long-term experiments such as this one are rare and invaluable for studying seed viability in natural soil conditions.


Asunto(s)
Germinación , Semillas , Humanos , Semillas/genética , Suelo , Agricultura , Ecología
7.
Curr Biol ; 33(10): 1926-1938.e6, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37080198

RESUMEN

A fundamental goal in plant microbiome research is to determine the relative impacts of host and environmental effects on root microbiota composition, particularly how host genotype impacts bacterial community composition. Most studies characterizing the effect of plant genotype on root microbiota undersample host genetic diversity and grow plants outside of their native ranges, making the associations between host and microbes difficult to interpret. Here, we characterized the root microbiota of a large diversity panel of switchgrass, a North American native C4 bioenergy crop, in three field locations spanning its native range. Our data, composed of 1,961 samples, suggest that field location is the primary determinant of microbiome composition; however, substantial heritable variation is widespread across bacterial taxa, especially those in the Sphingomonadaceae family. Despite diverse compositions, relatively few highly prevalent taxa make up the majority of the switchgrass root microbiota, a large fraction of which is shared across sites. Local genotypes preferentially recruit/filter for local microbes, supporting the idea of affinity between local plants and their microbiota. Using genome-wide association, we identified loci impacting the abundance of >400 microbial strains and found an enrichment of genes involved in immune responses, signaling pathways, and secondary metabolism. We found loci associated with over half of the core microbiota (i.e., microbes in >80% of samples), regardless of field location. Finally, we show a genetic relationship between a basal plant immunity pathway and relative abundances of root microbiota. This study brings us closer to harnessing and manipulating beneficial microbial associations via host genetics.


Asunto(s)
Microbiota , Panicum , Panicum/genética , Estudio de Asociación del Genoma Completo , Bacterias/genética , Genotipo
8.
Physiol Plant ; 174(6): e13812, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36326192

RESUMEN

Plants can cold acclimate to enhance their freezing tolerance by sensing declining temperature and photoperiod cues. However, the factors influencing genotypic variation in the induction of cold acclimation are poorly understood among perennial grasses. We hypothesized that the more northern upland switchgrass (Panicum virgatum L.) ecotype develops a higher degree of freezing tolerance by initiating cold acclimation at higher temperatures as compared with the coastal and southern lowland ecotypes. First, we determined the optimal method for assessing freezing tolerance and the length of exposure to 8/4°C required to induce the maximum level of freezing tolerance in the most northern upland and most southern lowland genotypes. We characterized the maximum freezing tolerance of eight uplands, three coastal and five lowland genotypes grown for 21 days at 8/4°C and a 10 or 16 h photoperiod. Next, we identified the temperature required to induce cold acclimation by exposing the 16 genotypes for 7 days at 20-6°C constant temperatures under a 10 or 16 h photoperiod. Cold acclimation initiated at temperatures 5 and 7°C higher in upland than in coastal and lowland genotypes. Among upland genotypes the shorter photoperiod induced cold acclimation at a 1°C higher temperature. Genotypes originating from a more northern latitude initiate cold acclimation at higher temperatures and develop higher maximum freezing tolerances. An earlier response to declining temperatures may provide the upland ecotype with additional time to prepare for winter and provide an advantage when plants are subjected to the rapid changes in fall temperature associated with injurious frosts.


Asunto(s)
Aclimatación , Frío , Panicum , Aclimatación/genética , Ecotipo , Congelación , Panicum/genética , Fotoperiodo
9.
Am J Bot ; 109(10): 1529-1544, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36129014

RESUMEN

PREMISE: Variation in seed and seedling traits underlies how plants interact with their environment during establishment, a crucial life history stage. We quantified genetic-based variation in seed and seedling traits in populations of the annual plant Plantago patagonica across a natural aridity gradient, leveraging natural intraspecific variation to predict how populations might evolve in response to increasing aridity associated with climate change in the Southwestern U.S. METHODS: We quantified seed size, seed size variation, germination timing, and specific leaf area in a greenhouse common garden, and related these traits to the climates of source populations. We then conducted a terminal drought experiment to determine which traits were most predictive of survival under early-season drought. RESULTS: All traits showed evidence of clinal variation-seed size decreased, germination timing accelerated, and specific leaf area increased with increasing aridity. Populations with more variable historical precipitation regimes showed greater variation in seed size, suggestive of past selection shaping a diversified bet-hedging strategy mediated by seed size. Seedling height, achieved via larger seeds or earlier germination, was a significant predictor of survival under drought. CONCLUSIONS: We documented substantial interspecific trait variation as well as clinal variation in several important seed and seedling traits, yet these slopes were often opposite to predictions for how individual traits might confer drought tolerance. This work shows that plant populations may adapt to increasing aridity via correlated trait responses associated with alternative life history strategies, but that trade-offs might constrain adaptive responses in individual traits.


Asunto(s)
Cambio Climático , Plantones , Plantones/genética , Germinación/fisiología , Semillas/genética , Adaptación Fisiológica/fisiología
10.
PLoS Biol ; 20(8): e3001681, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35951523

RESUMEN

Leaf fungal microbiomes can be fundamental drivers of host plant success, as they contain pathogens that devastate crop plants and taxa that enhance nutrient uptake, discourage herbivory, and antagonize pathogens. We measured leaf fungal diversity with amplicon sequencing across an entire growing season in a diversity panel of switchgrass (Panicum virgatum). We also sampled a replicated subset of genotypes across 3 additional sites to compare the importance of time, space, ecology, and genetics. We found a strong successional pattern in the microbiome shaped both by host genetics and environmental factors. Further, we used genome-wide association (GWA) mapping and RNA sequencing to show that 3 cysteine-rich receptor-like kinases (crRLKs) were linked to a genetic locus associated with microbiome structure. We confirmed GWAS results in an independent set of genotypes for both the internal transcribed spacer (ITS) and large subunit (LSU) ribosomal DNA markers. Fungal pathogens were central to microbial covariance networks, and genotypes susceptible to pathogens differed in their expression of the 3 crRLKs, suggesting that host immune genes are a principal means of controlling the entire leaf microbiome.


Asunto(s)
Micobioma , Panicum , Estudio de Asociación del Genoma Completo , Genotipo , Micobioma/genética , Panicum/genética , Panicum/microbiología , Hojas de la Planta/genética
11.
Proc Natl Acad Sci U S A ; 119(32): e2206345119, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35914152

RESUMEN

Methane (CH4) mole fractions from the large semiseasonal Llanos de Moxos wetlands (∼70,000 km2) in northern Bolivia were measured by aircraft flights and ground sampling during early March 2019 (late wet season). Daily fluxes of CH4 determined from the measurements using box models and inverse modeling were between 168 (± 50) and 456 (± 145) mg CH4⋅m-2⋅d-1 for the areas overflown, very high compared with those of previous Amazon basin studies. If the seasonality of the CH4 emissions is comparable to other parts of the Amazon Basin, the region could contribute as much as 8% of annual Amazonian CH4 emissions.


Asunto(s)
Gases de Efecto Invernadero , Humedales , Bolivia , Dióxido de Carbono/análisis , Gases de Efecto Invernadero/análisis , Metano/análisis , Estaciones del Año
12.
Heliyon ; 8(6): e09747, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35789875

RESUMEN

Introduction: The main purpose of this study was to determine if a combination of area noise measurements and task activity diaries give a reasonable estimate of full-shift dosimeter measurements in a cohort of utility workers. Few studies have been conducted to evaluate the efficacy of using task-based noise exposures to estimate full shift time weighted average (TWA) noise exposures. Methods: Estimates of full shift time TWA noise exposures for a group of utility workers (n = 224) were calculated using dosimeter measurements. Area noise measurements using a sound level meter were used to recreate the TWA for each personal dosimetry sample based on detail provided in the task activity diary for each sample. Full shift TWA noise exposures were compared to corresponding area noise measurements using simple linear regression analysis. Results: Associations between full shift TWA measurements and task-based area measurements were closely associated, with R2 values above 0.85 for all job roles. Discussion: Task-based noise exposure analysis has the potential to be widely used in the utilities industry. While full-shift monitoring to determine TWA exposures is useful, the changing work environment, variability in tasks and equipment, and varying workday hours, limit the ability of the 8-hr TWA to accurately characterise the exposures and associated health risks for utility workers.

13.
Evolution ; 76(10): 2228-2243, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35838076

RESUMEN

Speciation is driven by the evolution of reproductive isolating barriers that reduce, and ultimately prevent, substantial gene flow between lineages. Despite its central role in evolutionary biology, the process can be difficult to study because it proceeds differently among groups and may occur over long timescales. Due to this complexity, we typically rely on generalizations of empirical data to describe and understand the process. Previous reviews of reproductive isolation (RI) in flowering plants have suggested that prezygotic or extrinsic barriers generally have a stronger effect on reducing gene flow compared to postzygotic or intrinsic barriers. Past conclusions have rested on relatively few empirical estimates of RI; however, RI data have become increasingly abundant over the past 15 years. We analyzed data from recent studies quantifying multiple pre- and postmating barriers in plants and compared the strengths of isolating barriers across 89 taxa pairs using standardized RI metrics. Individual prezygotic barriers were on average stronger than individual postzygotic barriers, and the total strength of prezygotic RI was approximately twice that of postzygotic RI. These findings corroborate that ecological divergence and extrinsic factors, as opposed to solely the accumulation of genetic incompatibilities, are important to speciation and the maintenance of species boundaries in plants. Despite an emphasis in the literature on asymmetric postmating and postzygotic RI, we found that prezygotic barriers acted equally asymmetrically. Overall, substantial variability in the strengths of 12 isolating barriers highlights the great diversity of mechanisms that contribute to plant diversification.


Asunto(s)
Especiación Genética , Aislamiento Reproductivo , Flujo Génico , Reproducción , Semillas/genética , Plantas
14.
Theor Appl Genet ; 135(8): 2577-2592, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35780149

RESUMEN

KEY MESSAGE: We investigate the genetic basis of panicle architecture in switchgrass in two mapping populations across a latitudinal gradient, and find many stable, repeatable genetic effects and limited genetic interactions with the environment. Grass species exhibit large diversity in panicle architecture influenced by genes, the environment, and their interaction. The genetic study of panicle architecture in perennial grasses is limited. In this study, we evaluate the genetic basis of panicle architecture including panicle length, primary branching number, and secondary branching number in an outcrossed switchgrass QTL population grown across ten field sites in the central USA through multi-environment mixed QTL analysis. We also evaluate genetic effects in a diversity panel of switchgrass grown at three of the ten field sites using genome-wide association (GWAS) and multivariate adaptive shrinkage. Furthermore, we search for candidate genes underlying panicle traits in both of these independent mapping populations. Overall, 18 QTL were detected in the QTL mapping population for the three panicle traits, and 146 unlinked genomic regions in the diversity panel affected one or more panicle trait. Twelve of the QTL exhibited consistent effects (i.e., no QTL by environment interactions or no QTL × E), and most (four of six) of the effects with QTL × E exhibited site-specific effects. Most (59.3%) significant partially linked diversity panel SNPs had significant effects in all panicle traits and all field sites and showed pervasive pleiotropy and limited environment interactions. Panicle QTL co-localized with significant SNPs found using GWAS, providing additional power to distinguish between true and false associations in the diversity panel.


Asunto(s)
Oryza , Panicum , Mapeo Cromosómico , Variación Genética , Estudio de Asociación del Genoma Completo , Oryza/genética , Panicum/genética , Fenotipo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
15.
PLoS One ; 17(6): e0269704, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35675361

RESUMEN

The concept of professional judgement underpins the way in which an occupational hygienist assesses an exposure problem. Despite the importance placed on professional judgement in the discipline, a method of assessment to characterise accuracy has not been available. In this paper, we assess the professional judgement of four occupational hygienists ('experts') when completing exposure assessments on a range of airborne contaminants across a number of job roles within a surface mining environment in the Pilbara region of Western Australia. The job roles assessed were project driller, mobile equipment operator, fixed plant maintainer, and drill and blast operator. The contaminants of interest were respirable crystalline silica, respirable dust, and inhalable dust. The novel approach of eliciting exposure estimates focusing on contaminant concentration and attribution of an exposure standard estimate was used. The majority of the elicited values were highly skewed; therefore, a scaled Beta distribution were fitted. These elicited fitted distributions were then compared to measured data distributions, the results of which had been collected as part of an occupational hygiene program assessing full-shift exposures to the same contaminants and job roles assessed by the experts. Our findings suggest that the participating experts within this study tended to overestimate exposures. In addition, the participating experts were more accurate at estimating percentage of an exposure standard than contaminant concentration. We demonstrate that this elicitation approach and the encoding methodology contained within can be applied to assess accuracy of exposure judgements which will impact on worker protection and occupational health outcomes.


Asunto(s)
Contaminantes Ocupacionales del Aire , Exposición Profesional , Contaminantes Ocupacionales del Aire/análisis , Polvo/análisis , Higiene , Minería , Exposición Profesional/análisis , Dióxido de Silicio/análisis
16.
Am Nat ; 199(6): 743-757, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35580224

RESUMEN

AbstractSpatial segregation of closely related species is usually attributed to differences in stress tolerance and competitive ability. For both animals and plants, reproductive interactions between close relatives can impose a fitness cost that is more detrimental to the rarer species. Frequency-dependent mating interactions may thus prevent the establishment of immigrants within heterospecific populations, maintaining spatial segregation of species. Despite strong spatial segregation in natural populations, two sympatric California monkeyflowers (Mimulus nudatus and M. guttatus) survive and reproduce in the other's habitat when transplanted reciprocally. We hypothesized that a frequency-dependent mating disadvantage maintains spatial segregation of these monkeyflowers during natural immigration. To evaluate this hypothesis, we performed two field experiments. First, we experimentally added immigrants in varying numbers to sites dominated by heterospecifics. Second, we reciprocally transplanted arrays of varying resident and immigrant frequencies. Immigrant seed viability decreased with conspecific rarity for M. guttatus but not for M. nudatus. We observed immigrant minority disadvantage for both species, but it was driven by different factors-frequency-dependent hybridization for M. guttatus and competition for resources and/or pollinators for M. nudatus. Overall, our results suggest a major role for reproductive interference in spatial segregation that should be evaluated along with stress tolerance and competitive ability.


Asunto(s)
Mimulus , Animales , Ecosistema , Hibridación Genética , Mimulus/genética , Semillas , Simpatría
17.
Proc Natl Acad Sci U S A ; 119(15): e2118879119, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35377798

RESUMEN

Polyploidy results from whole-genome duplication and is a unique form of heritable variation with pronounced evolutionary implications. Different ploidy levels, or cytotypes, can exist within a single species, and such systems provide an opportunity to assess how ploidy variation alters phenotypic novelty, adaptability, and fitness, which can, in turn, drive the development of unique ecological niches that promote the coexistence of multiple cytotypes. Switchgrass, Panicum virgatum, is a widespread, perennial C4 grass in North America with multiple naturally occurring cytotypes, primarily tetraploids (4×) and octoploids (8×). Using a combination of genomic, quantitative genetic, landscape, and niche modeling approaches, we detect divergent levels of genetic admixture, evidence of niche differentiation, and differential environmental sensitivity between switchgrass cytotypes. Taken together, these findings support a generalist (8×)­specialist (4×) trade-off. Our results indicate that the 8× represent a unique combination of genetic variation that has allowed the expansion of switchgrass' ecological niche and thus putatively represents a valuable breeding resource.


Asunto(s)
Aclimatación , Panicum , Poliploidía , Aclimatación/genética , Variación Genética , Panicum/genética , Panicum/fisiología , Tetraploidía
18.
Curr Opin Plant Biol ; 66: 102152, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35065527

RESUMEN

A hundred years after Turesson first clearly described how locally adaptive variation is distributed within species, plant biologists are making major breakthroughs in our understanding of mechanisms underlying adaptation from local populations to the scale of continents. Although the genetics of local adaptation has typically been studied in smaller reciprocal transplant experiments, it is now being evaluated with whole genomes in large-scale networks of common garden experiments with perennial switchgrass and poplar trees. These studies support the hypothesis that a complex combination of loci, both with and without adaptive trade-offs, underlies local adaptation and that hybridization and adaptive introgression play a key role in the evolution of these species. Future studies incorporating high-throughput phenotyping, gene expression, and modeling will be used to predict responses of these species to climate change.


Asunto(s)
Ecotipo , Populus , Adaptación Fisiológica/genética , Cambio Climático , Plantas , Populus/genética
19.
Philos Trans A Math Phys Eng Sci ; 380(2215): 20210108, 2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-34865528

RESUMEN

Removing methane from the air is possible, but do the costs outweigh the benefits? This note explores the question of whether removing methane from the atmosphere is justifiable. Destruction of methane by oxidation to CO2 eliminates 97% of the warming impact on a 100-yr time scale. Methane can be oxidized by a variety of methods including thermal or ultraviolet photocatalysis and various processes of physical, chemical or biological oxidizers. Each removal method has energy costs (with the risk of causing embedded CO2 emission that cancel the global warming gain), but in specific circumstances, including settings where air with high methane is habitually present, removal may be competitive with direct efforts to cut fugitive methane leaks. In all cases however, great care must be taken to ensure that the destruction has a net positive impact on the total global warming, and that the resources required would not be better used for stopping the methane from being emitted. This article is part of a discussion meeting issue 'Rising methane: is warming feeding warming? (part 2)'.


Asunto(s)
Metano , Oxidación-Reducción
20.
Philos Trans A Math Phys Eng Sci ; 380(2215): 20200449, 2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-34865534

RESUMEN

The atmospheric methane (CH4) burden is rising sharply, but the causes are still not well understood. One factor of uncertainty is the importance of tropical CH4 emissions into the global mix. Isotopic signatures of major sources remain poorly constrained, despite their usefulness in constraining the global methane budget. Here, a collection of new δ13CCH4 signatures is presented for a range of tropical wetlands and rice fields determined from air samples collected during campaigns from 2016 to 2020. Long-term monitoring of δ13CCH4 in ambient air has been conducted at the Chacaltaya observatory, Bolivia and Southern Botswana. Both long-term records are dominated by biogenic CH4 sources, with isotopic signatures expected from wetland sources. From the longer-term Bolivian record, a seasonal isotopic shift is observed corresponding to wetland extent suggesting that there is input of relatively isotopically light CH4 to the atmosphere during periods of reduced wetland extent. This new data expands the geographical extent and range of measurements of tropical wetland and rice δ13CCH4 sources and hints at significant seasonal variation in tropical wetland δ13CCH4 signatures which may be important to capture in future global and regional models. This article is part of a discussion meeting issue 'Rising methane: is warming feeding warming? (part 2)'.


Asunto(s)
Oryza , Humedales , Atmósfera , Metano , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...