Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 3(1): 646, 2020 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-33159171

RESUMEN

Over a decade ago Polymerase δ interacting protein of 38 kDa (PDIP38) was proposed to play a role in DNA repair. Since this time, both the physiological function and subcellular location of PDIP38 has remained ambiguous and our present understanding of PDIP38 function has been hampered by a lack of detailed biochemical and structural studies. Here we show, that human PDIP38 is directed to the mitochondrion in a membrane potential dependent manner, where it resides in the matrix compartment, together with its partner protein CLPX. Our structural analysis revealed that PDIP38 is composed of two conserved domains separated by an α/ß linker region. The N-terminal (YccV-like) domain of PDIP38 forms an SH3-like ß-barrel, which interacts specifically with CLPX, via the adaptor docking loop within the N-terminal Zinc binding domain of CLPX. In contrast, the C-terminal (DUF525) domain forms an immunoglobin-like ß-sandwich fold, which contains a highly conserved putative substrate binding pocket. Importantly, PDIP38 modulates the substrate specificity of CLPX and protects CLPX from LONM-mediated degradation, which stabilises the cellular levels of CLPX. Collectively, our findings shed new light on the mechanism and function of mitochondrial PDIP38, demonstrating that PDIP38 is a bona fide adaptor protein for the mitochondrial protease, CLPXP.


Asunto(s)
Endopeptidasa Clp/metabolismo , Mitocondrias/metabolismo , Proteínas Nucleares/metabolismo , Endopeptidasa Clp/genética , Regulación de la Expresión Génica , Células HeLa , Humanos , Proteínas Nucleares/genética , Proteínas Recombinantes
2.
J Struct Biol ; 179(2): 193-201, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22710082

RESUMEN

The mitochondrial matrix of mammalian cells contains several different ATP-dependent proteases, including CLPXP, some of which contribute to protein maturation and quality control. Currently however, the substrates and the physiological roles of mitochondrial CLPXP in humans, has remained elusive. Similarly, the mechanism by which these ATP-dependent proteases recognize their substrates currently remains unclear. Here we report the characterization of a Walker B mutation in human CLPX, in which the highly conserved glutamate was replaced with alanine. This mutant protein exhibits improved interaction with the model unfolded substrate casein and several putative physiological substrates in vitro. Although this mutant lacks ATPase activity, it retains the ability to mediate casein degradation by hCLPP, in a fashion similar to the small molecule ClpP-activator, ADEP. Our functional dissection of hCLPX structure, also identified that most model substrates are recognized by the N-terminal domain, although some substrates bypass this step and dock, directly to the pore-1 motif. Collectively these data reveal, that despite the difference between bacterial and human CLPXP complexes, human CLPXP exhibits a similar mode of substrate recognition and is deregulated by ADEPs.


Asunto(s)
Endopeptidasa Clp/metabolismo , Animales , Endopeptidasa Clp/genética , Humanos , Mutación , Unión Proteica , Especificidad por Sustrato
3.
Biochem Cell Biol ; 88(1): 97-108, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20130683

RESUMEN

In eukaryotes, mitochondria are required for the proper function of the cell and as such the maintenance of proteins within this organelle is crucial. One class of proteins, collectively known as the AAA+ (ATPases associated with various cellular activities) superfamily, make a number of important contributions to mitochondrial protein homeostasis. In this organelle, they contribute to the maturation and activation of proteins, general protein quality control, respiratory chain complex assembly, and mitochondrial DNA maintenance and integrity. To achieve such diverse functions this group of ATP-dependent unfoldases utilize the energy from ATP hydrolysis to modulate the structure of proteins via unique domains and (or) associated functional components. In this review, we describe the current status of knowledge regarding the known mitochondrial AAA+ proteins and their role in this organelle.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Adenosina Trifosfatasas/genética , Humanos , Hidrólisis , Mitocondrias/genética , Proteínas Mitocondriales/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...