Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biosci Rep ; 44(5)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38573803

RESUMEN

Chloride is a key anion involved in cellular physiology by regulating its homeostasis and rheostatic processes. Changes in cellular Cl- concentration result in differential regulation of cellular functions such as transcription and translation, post-translation modifications, cell cycle and proliferation, cell volume, and pH levels. In intracellular compartments, Cl- modulates the function of lysosomes, mitochondria, endosomes, phagosomes, the nucleus, and the endoplasmic reticulum. In extracellular fluid (ECF), Cl- is present in blood/plasma and interstitial fluid compartments. A reduction in Cl- levels in ECF can result in cell volume contraction. Cl- is the key physiological anion and is a principal compensatory ion for the movement of the major cations such as Na+, K+, and Ca2+. Over the past 25 years, we have increased our understanding of cellular signaling mediated by Cl-, which has helped in understanding the molecular and metabolic changes observed in pathologies with altered Cl- levels. Here, we review the concentration of Cl- in various organs and cellular compartments, ion channels responsible for its transportation, and recent information on its physiological roles.


Asunto(s)
Cloruros , Humanos , Cloruros/metabolismo , Animales , Homeostasis , Canales de Cloruro/metabolismo , Canales de Cloruro/genética , Transducción de Señal , Líquido Extracelular/metabolismo , Transporte Iónico
2.
J Biol Chem ; 299(11): 105349, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37838179

RESUMEN

Chloride intracellular channels (CLICs) are a family of proteins that exist in soluble and transmembrane forms. The newest discovered member of the family CLIC6 is implicated in breast, ovarian, lung gastric, and pancreatic cancers and is also known to interact with dopamine-(D(2)-like) receptors. The soluble structure of the channel has been resolved, but the exact physiological role of CLIC6, biophysical characterization, and the membrane structure remain unknown. Here, we aimed to characterize the biophysical properties of this channel using a patch-clamp approach. To determine the biophysical properties of CLIC6, we expressed CLIC6 in HEK-293 cells. On ectopic expression, CLIC6 localizes to the plasma membrane of HEK-293 cells. We established the biophysical properties of CLIC6 by using electrophysiological approaches. Using various anions and potassium (K+) solutions, we determined that CLIC6 is more permeable to chloride-(Cl-) as compared to bromide-(Br-), fluoride-(F-), and K+ ions. In the whole-cell configuration, the CLIC6 currents were inhibited after the addition of 10 µM of IAA-94 (CLIC-specific blocker). CLIC6 was also found to be regulated by pH and redox potential. We demonstrate that the histidine residue at 648 (H648) in the C terminus and cysteine residue in the N terminus (C487) are directly involved in the pH-induced conformational change and redox regulation of CLIC6, respectively. Using qRT-PCR, we identified that CLIC6 is most abundant in the lung and brain, and we recorded the CLIC6 current in mouse lung epithelial cells. Overall, we have determined the biophysical properties of CLIC6 and established it as a Cl- channel.


Asunto(s)
Canales de Cloruro , Cloruros , Animales , Humanos , Ratones , Aniones/metabolismo , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Cloruros/metabolismo , Células Epiteliales/metabolismo , Células HEK293
3.
Cell Calcium ; 99: 102466, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34509139

RESUMEN

Sea urchin sperm swimming is regulated by speract, a decapeptide released from egg jelly that induces chemotaxis and triggers membrane potential (Em) changes, intracellular increases in cyclic nucleotides (cGMP, cAMP), pH (pHi) and calcium concentration ([Ca2+]i). The identity of the ionic transporters associated with the [Ca2+]i changes required for chemotaxis is not fully known. CatSper, a sperm exclusive Ca2+ channel has been detected by proteomic analysis and immunofluorescence in sea urchin sperm and there is evidence for its involvement in chemotaxis. This work presents an electrophysiological characterization of a CatSper channel in sea urchin sperm. By swelling sperm suspending them in 10-fold diluted artificial sea water (ASW) we achieve on-cell patch-clamp recordings that document a mildly voltage and pHi dependent Na+ permeable channel (in absence of divalent ions in the pipette), sensitive to speract, and blocked by Mibefradil (Mibe), NNC55-0396 (NNC) and RU1968 (RU) resembling CatSper. We also recorded a voltage dependent Cl- channel inhibited by Niflumic Acid and the TMEM16A blocker.


Asunto(s)
Proteómica , Motilidad Espermática , Animales , Calcio/metabolismo , Canales de Calcio , Masculino , Erizos de Mar/metabolismo , Espermatozoides/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...