Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 775, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38278798

RESUMEN

Accumulation of senescent cells with age leads to tissue dysfunction and related diseases. Their detection in vivo still constitutes a challenge in aging research. We describe the generation of a fluorogenic probe (sulfonic-Cy7Gal) based on a galactose derivative, to serve as substrate for ß-galactosidase, conjugated to a Cy7 fluorophore modified with sulfonic groups to enhance its ability to diffuse. When administered to male or female mice, ß-galactosidase cleaves the O-glycosidic bond, releasing the fluorophore that is ultimately excreted by the kidneys and can be measured in urine. The intensity of the recovered fluorophore reliably reflects an experimentally controlled load of cellular senescence and correlates with age-associated anxiety during aging and senolytic treatment. Interestingly, our findings with the probe indicate that the effects of senolysis are temporary if the treatment is discontinued. Our strategy may serve as a basis for developing fluorogenic platforms designed for easy longitudinal monitoring of enzymatic activities in biofluids.


Asunto(s)
Envejecimiento , Senescencia Celular , Masculino , Femenino , Ratones , Animales , Envejecimiento/fisiología , Senescencia Celular/fisiología , beta-Galactosidasa , Riñón , Colorantes Fluorescentes
3.
FEBS J ; 290(5): 1314-1325, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-35527516

RESUMEN

A new method for senescent cell detection is described, which is based on lipofuscin labeling with a fluorescent reporter through a biorthogonal strain-promoted azide-alkyne cycloaddition. The sensing protocol involves a first step where the interaction of lipofuscin with a Sudan Black B derivative containing an azide moiety (SBB-N3 ) is carried out. In the final step, the azide moiety reacts with a fluorophore containing a cyclooctene ring (BODIPY). The efficacy of this two-step protocol is assessed in senescent melanoma SK-MEL-103 cells, senescent triple-negative breast cancer MDA-MB-231 cells and senescent WI-38 fibroblasts. In all cases, a clear fluorescence pattern was observed in senescent cells, compared to proliferative cells, only when the SBB-N3 -BODIPY probe was formed. Our results provide an alternative tool for the detection of senescent cells, based on an in situ bio-orthogonal reaction for lipofuscin labeling.


Asunto(s)
Azidas , Lipofuscina , Alquinos , Reacción de Cicloadición , Colorantes Fluorescentes , Senescencia Celular
4.
Anal Chem ; 95(2): 1643-1651, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36580602

RESUMEN

Cellular senescence is a stable cell cycle arrest in response to stress or other damage stimuli to maintain tissue homeostasis. However, the accumulation of senescent cells can lead to the progression of various senescence-related disorders. In this paper, we describe the development of a ß-galactosidase-activatable near-infrared (NIR) senoprobe, NBGal, for the detection of senescent cells based on the use of the FDA-approved Nile blue (NB) fluorophore. NBGal was validated in chemotherapeutic-induced senescence cancer models in vitro using SK-Mel 103 and 4T1 cell lines. In vivo monitoring of cellular senescence was evaluated in orthotopic triple-negative breast cancer-bearing mice treated with palbociclib to induce senescence. In all cases, NBGal exhibited a selective tracking of senescent cells mainly ascribed to the overexpressed ß-galactosidase enzyme responsible for hydrolyzing the NBGal probe generating the highly emissive NB fluorophore. In this way, NBGal has proven to be a qualitative, rapid, and minimally invasive probe that allows the direct detection of senescent cells in vivo.


Asunto(s)
Senescencia Celular , Ratones , Animales , Puntos de Control del Ciclo Celular/fisiología , Línea Celular , beta-Galactosidasa/metabolismo
5.
Chem Mater ; 34(17): 7817-7827, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36117882

RESUMEN

Encapsulation of biomolecules using metal-organic frameworks (MOFs) to form stable biocomposites has been demonstrated to be a valuable strategy for their preservation and controlled release, which has been however restricted to specific electrostatic surface conditions. We present a Lewis-acid-mediated general in situ strategy that promotes the spontaneous MOF growth on a broad variety of proteins, for the first time, regardless of their surface nature. We demonstrate that MOFs based on cations exhibiting considerable inherent acidity such as MIL-100(Fe) enable efficient biomolecule encapsulation, including elusive alkaline proteins previously inaccessible by the well-developed in situ azolate-based MOF encapsulation. Specifically, we prove the MIL-100(Fe) scaffold for the encapsulation of a group of proteins exhibiting very different isoelectric points (5 < pI < 11), allowing triggered release under biocompatible conditions and retaining their activity after exposure to denaturing environments. Finally, we demonstrate the potential of the myoglobin-carrying biocomposite to facilitate the delivery of O2 into hypoxic human lung carcinoma A549 cells, overcoming hypoxia-associated chemoresistance.

6.
Pharmacol Res ; 183: 106356, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35843569

RESUMEN

Many anticancer agents used in clinics induce premature senescence in healthy tissues generating accelerated aging processes and adverse side-effects in patients. Cardiotoxicity is a well-known limiting factor of anticancer treatment with doxorubicin (DOX), a very effective anthracycline widely used as antitumoral therapy in clinical practice, that leads to long-term morbidity and mortality. DOX exposure severely affects the population of cardiac cells in both mice and human hearts by inducing premature senescence, which may represent the molecular basis of DOX-induced cardiomyopathy. Here, we demonstrate that senescence induction in the heart contributes to impaired cardiac function in mice upon DOX treatment. Concomitant elimination of senescent cells with the senolytic Navitoclax in different formulations produces a significant decrease in senescence and cardiotoxicity markers together with the restoration of the cardiac function in mice followed by echocardiography. These results evidence the potential clinical use of senolytic therapies to alleviate cardiotoxicities induced in chemotherapy-treated patients.


Asunto(s)
Cardiomiopatías , Cardiotoxicidad , Animales , Antibióticos Antineoplásicos/toxicidad , Cardiomiopatías/inducido químicamente , Cardiomiopatías/prevención & control , Cardiotoxicidad/tratamiento farmacológico , Doxorrubicina/efectos adversos , Humanos , Ratones , Miocitos Cardíacos , Senoterapéuticos
7.
Food Chem ; 383: 132460, 2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-35182878

RESUMEN

Proton-nuclear-magnetic-resonance-spectroscopy (1H NMR) is the widely accepted reference method for monitoring honey adulteration; however, the need to find cheaper, faster, and more environmentally friendly methodologies makes the voltammetric-electronic-tongue (VET) a good alternative. The present study aims to demonstrate the ability of VET (in comparison with 1H NMR) to predict the adulteration of honey with syrups. Samples of monofloral honeys (citrus, sunflower and heather, assessed by pollen analysis) simulating different levels of adulteration by adding syrups (barley, rice and corn) from 2.5 to 40% (w/w) were analyzed using both techniques. According to the indicators (slope, intercept, regression coefficient-R2, root mean square error of prediction-RMSEP) of the partial-least-squares (PLS) regression models, in general terms, the performance of these models obtained by both techniques was good, with an average error lower than 5% in both cases. These results support the use of VET as a screening technique to easily detect honey adulteration with syrups.


Asunto(s)
Miel , Nariz Electrónica , Contaminación de Alimentos/análisis , Miel/análisis , Análisis de los Mínimos Cuadrados , Espectroscopía de Resonancia Magnética/métodos , Polen
8.
Anal Bioanal Chem ; 413(9): 2361-2388, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33606064

RESUMEN

ß-Galactosidase (ß-Gal) is a widely used enzyme as a reporter gene in the field of molecular biology which hydrolyzes the ß-galactosides into monosaccharides. ß-Gal is an essential enzyme in humans and its deficiency or its overexpression results in several rare diseases. Cellular senescence is probably one of the most relevant physiological disorders that involve ß-Gal enzyme. In this review, we assess the progress made to date in the design of molecular-based probes for the detection of ß-Gal both in vitro and in vivo. Most of the reported molecular probes for the detection of ß-Gal consist of a galactopyranoside residue attached to a signalling unit through glycosidic bonds. The ß-Gal-induced hydrolysis of the glycosidic bonds released the signalling unit with remarkable changes in color and/or emission. Additional examples based on other approaches are also described. The wide applicability of these probes for the rapid and in situ detection of de-regulation ß-Gal-related diseases has boosted the research in this fertile field.


Asunto(s)
Colorantes Fluorescentes/química , Galactosa/análogos & derivados , beta-Galactosidasa/análisis , Animales , Senescencia Celular , Colorimetría/métodos , Pruebas de Enzimas/métodos , Galactósidos/química , Humanos , Hidrólisis , Sondas Moleculares/química
9.
Anal Chem ; 93(5): 3052-3060, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33502178

RESUMEN

Cellular senescence is a state of stable cell cycle arrest that can negatively affect the regenerative capacities of tissues and can contribute to inflammation and the progression of various aging-related diseases. Advances in the in vivo detection of cellular senescence are still crucial to monitor the action of senolytic drugs and to assess the early onset or accumulation of senescent cells. Here, we describe a naphthalimide-styrene-based probe (HeckGal) for the detection of cellular senescence both in vitro and in vivo. HeckGal is hydrolyzed by the increased lysosomal ß-galactosidase activity of senescent cells, resulting in fluorescence emission. The probe was validated in vitro using normal human fibroblasts and various cancer cell lines undergoing senescence induced by different stress stimuli. Remarkably, HeckGal was also validated in vivo in an orthotopic breast cancer mouse model treated with senescence-inducing chemotherapy and in a renal fibrosis mouse model. In all cases, HeckGal allowed the unambiguous detection of senescence in vitro as well as in tissues and tumors in vivo. This work is expected to provide a potential technology for senescence detection in aged or damaged tissues.


Asunto(s)
Naftalimidas , Estireno , Animales , Senescencia Celular , Fibroblastos , Ratones , Fotones
10.
Chemistry ; 27(4): 1306-1310, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33064343

RESUMEN

Benzene is a highly toxic aromatic hydrocarbon. Inhaling benzene can cause dizziness, vertigo, headaches, aplasia, mutations and, in the most extreme cases, cancer. Trans,trans-muconic acid (t,t-MA) is one of the metabolization products of benzene. Although different analytical methods have been reported for the determination of t,t-MA, these are often expensive, require trained personnel, are not suitable for on-site measurements, and use hazardous organic solvents. For these reasons, the development of reliable, selective and sensitive methods for rapid and in situ detection of t,t-MA are of importance. Addressing this challenge, a nanodevice for the selective and sensitive quantification of t,t-MA in urine is reported. The nanodevice used is achieved using mesoporous silica nanoparticles loaded with a dye reporter and capped with a dicopper(II) azacryptand. Pore opening and payload release is induced rapidly (10 min) and selectively with t,t-MA in urine, using a simple fluorimeter without sample pretreatment.


Asunto(s)
Benceno , Nanopartículas , Biomarcadores , Dióxido de Silicio/química , Ácido Sórbico/análogos & derivados , Ácido Sórbico/química , Ácido Sórbico/metabolismo
11.
J Control Release ; 323: 624-634, 2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-32376460

RESUMEN

The induction of senescence produces a stable cell cycle arrest in cancer cells, thereby inhibiting tumor growth; however, the incomplete immune cell-mediated clearance of senescent cells may favor tumor relapse, limiting the long-term anti-tumorigenic effect of such drugs. A combination of senescence induction and the elimination of senescent cells may, therefore, represent an efficient means to inhibit tumor relapse. In this study, we explored the antitumor efficacy of a combinatory senogenic and targeted senolytic therapy in an immunocompetent orthotopic mouse model of the aggressive triple negative breast cancer subtype. Following palbociclib-induced senogenesis and senolysis by treatment with nano-encapsulated senolytic agent navitoclax, we observed inhibited tumor growth, reduced metastases, and a reduction in the systemic toxicity of navitoclax. We believe that this combination treatment approach may have relevance to other senescence-inducing chemotherapeutic drugs and additional tumor types. SIGNIFICANCE: While the application of senescence inducers represents a successful treatment strategy in breast cancer patients, some patients still relapse, perhaps due to the subsequent accumulation of senescent cells in the body that can promote tumor recurrence. We now demonstrate that a combination treatment of a senescence inducer and a senolytic nanoparticle selectively eliminates senescent cells, delays tumor growth, and reduces metastases in a mouse model of aggressive breast cancer. Collectively, our results support targeted senolysis as a new therapeutic opportunity to improve outcomes in breast cancer patients.


Asunto(s)
Senescencia Celular , Neoplasias de la Mama Triple Negativas , Animales , Puntos de Control del Ciclo Celular , Humanos , Ratones
12.
J Control Release ; 323: 421-430, 2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-32371265

RESUMEN

The characteristics and electromechanical properties of conductive polymers together to their biocompatibility have boosted their application as a suitable tool in regenerative medicine and tissue engineering. However, conducting polymers as drug release materials are far from being ideal. A possibility to overcome this drawback is to combine conducting polymers with on-command delivery particles with inherent high-loading capacity. In this scenario, we report here the preparation of conduction polymers containing gated mesoporous silica nanoparticles (MSN) loaded with a cargo that is delivered on command by electro-chemical stimuli increasing the potential use of conducting polymers as controlled delivery systems. MSNs are loaded with Rhodamine B (Rh B), anchored to the conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT) doped with poly[(4-styrenesulfonic acid)-co-(maleic acid)], functionalized with a bipyridinium derivative and pores are capped with heparin (P3) by electrostatic interactions. P3 releases the entrapped cargo after the application of -640 mV voltage versus the saturated calomel electrode (SCE). Pore opening in the nanoparticles and dye delivery is ascribed to both (i) the reduction of the grafted bipyridinium derivative and (ii) the polarization of the conducting polymer electrode to negative potentials that induce detachment of positively charged heparin from the surface of the nanoparticles. Biocompatibility and cargo release studies were carried out in HeLa cells cultures.


Asunto(s)
Nanopartículas , Dióxido de Silicio , Compuestos Bicíclicos Heterocíclicos con Puentes , Células HeLa , Humanos , Polímeros , Porosidad
13.
Angew Chem Int Ed Engl ; 59(35): 15152-15156, 2020 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-32416002

RESUMEN

In vivo detection of cellular senescence is accomplished by using mesoporous silica nanoparticles loaded with the NIR-FDA approved Nile blue (NB) dye and capped with a galactohexasaccharide (S3). NB emission at 672 nm is highly quenched inside S3, yet a remarkable emission enhancement is observed upon cap hydrolysis in the presence of ß-galactosidase and dye release. The efficacy of the probe to detect cellular senescence is tested in vitro in melanoma SK-Mel-103 and breast cancer 4T1 cells and in vivo in palbociclib-treated BALB/cByJ mice bearing breast cancer tumor.


Asunto(s)
Senescencia Celular/inmunología , Colorantes Fluorescentes/uso terapéutico , Animales , Femenino , Humanos , Ratones , Oxazinas
14.
Aging Cell ; 19(4): e13142, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32233024

RESUMEN

Pharmacologically active compounds with preferential cytotoxic activity for senescent cells, known as senolytics, can ameliorate or even revert pathological manifestations of senescence in numerous preclinical mouse disease models, including cancer models. However, translation of senolytic therapies to human disease is hampered by their suboptimal specificity for senescent cells and important toxicities that narrow their therapeutic windows. We have previously shown that the high levels of senescence-associated lysosomal ß-galactosidase (SA-ß-gal) found within senescent cells can be exploited to specifically release tracers and cytotoxic cargoes from galactose-encapsulated nanoparticles within these cells. Here, we show that galacto-conjugation of the BCL-2 family inhibitor Navitoclax results in a potent senolytic prodrug (Nav-Gal), that can be preferentially activated by SA-ß-gal activity in a wide range of cell types. Nav-Gal selectively induces senescent cell apoptosis and has a higher senolytic index than Navitoclax (through reduced activation in nonsenescent cells). Nav-Gal enhances the cytotoxicity of standard senescence-inducing chemotherapy (cisplatin) in human A549 lung cancer cells. Concomitant treatment with cisplatin and Nav-Gal in vivo results in the eradication of senescent lung cancer cells and significantly reduces tumour growth. Importantly, galacto-conjugation reduces Navitoclax-induced platelet apoptosis in human and murine blood samples treated ex vivo, and thrombocytopenia at therapeutically effective concentrations in murine lung cancer models. Taken together, we provide a potentially versatile strategy for generating effective senolytic prodrugs with reduced toxicities.


Asunto(s)
Compuestos de Anilina/farmacología , Antineoplásicos/farmacología , Plaquetas/efectos de los fármacos , Galactosa/farmacología , Profármacos/farmacología , Sulfonamidas/farmacología , Compuestos de Anilina/química , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Galactosa/química , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones SCID , Estructura Molecular , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/patología , Profármacos/síntesis química , Profármacos/química , Sulfonamidas/química , Células Tumorales Cultivadas
15.
Chemistry ; 26(13): 2813-2816, 2020 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-31943443

RESUMEN

This work reports the synthesis, characterization, and sensing behavior of a hybrid nanodevice for the detection of the potent abuse drug 25I-NBOMe. The system is based on mesoporous silica nanoparticles, loaded with a fluorescent dye, functionalized with a serotonin derivative and capped with the 5-HT2A receptor antibody. In the presence of 25I-NBOMe the capping antibody is displaced, leading to pore opening and rhodamine B release. This delivery was ascribed to 5-HT2A receptor antibody detachment from the surface due to its stronger coordination with 25I-NBOMe present in the solution. The prepared nanodevice allowed the sensitive (limit of detection of 0.6 µm) and selective recognition of the 25I-NBOMe drug (cocaine, heroin, mescaline, lysergic acid diethylamide, MDMA, and morphine were unable to induce pore opening and rhodamine B release). This nanodevice acts as a highly sensitive and selective fluorometric probe for the 25I-NBOMe illicit drug in artificial saliva and in sweets.


Asunto(s)
Dimetoxifeniletilamina/análogos & derivados , Alucinógenos/química , Serotonina/química , Dimetoxifeniletilamina/análisis , Dimetoxifeniletilamina/química , Humanos
16.
Sensors (Basel) ; 19(23)2019 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-31771224

RESUMEN

This review includes examples of silica-based, chromo-fluorogenic nanosensors with the aim of illustrating the evolution of the discipline in recent decades through relevant research developed in our group. Examples have been grouped according to the sensing strategies. A clear evolution from simply functionalized materials to new protocols involving molecular gates and the use of highly selective biomolecules such as antibodies and oligonucleotides is reported. Some final examples related to the evolution of chromogenic arrays and the possible use of nanoparticles to communicate with other nanoparticles or cells are also included. A total of 64 articles have been summarized, highlighting different sensing mechanisms.

17.
EMBO Mol Med ; 10(9)2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30012580

RESUMEN

Senescent cells accumulate in multiple aging-associated diseases, and eliminating these cells has recently emerged as a promising therapeutic approach. Here, we take advantage of the high lysosomal ß-galactosidase activity of senescent cells to design a drug delivery system based on the encapsulation of drugs with galacto-oligosaccharides. We show that gal-encapsulated fluorophores are preferentially released within senescent cells in mice. In a model of chemotherapy-induced senescence, gal-encapsulated cytotoxic drugs target senescent tumor cells and improve tumor xenograft regression in combination with palbociclib. Moreover, in a model of pulmonary fibrosis in mice, gal-encapsulated cytotoxics target senescent cells, reducing collagen deposition and restoring pulmonary function. Finally, gal-encapsulation reduces the toxic side effects of the cytotoxic drugs. Drug delivery into senescent cells opens new diagnostic and therapeutic applications for senescence-associated disorders.


Asunto(s)
Senescencia Celular/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Galactosa/metabolismo , Lisosomas/enzimología , Oligosacáridos/metabolismo , beta-Galactosidasa/metabolismo , Animales , Supervivencia Celular/efectos de los fármacos , Citotoxinas/administración & dosificación , Citotoxinas/farmacología , Modelos Animales de Enfermedad , Composición de Medicamentos , Colorantes Fluorescentes/metabolismo , Xenoinjertos , Ratones , Trasplante de Neoplasias , Neoplasias/tratamiento farmacológico , Piperazinas/administración & dosificación , Piperazinas/farmacología , Piridinas/administración & dosificación , Piridinas/farmacología , Coloración y Etiquetado
18.
ChemistryOpen ; 7(5): 401-428, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29872615

RESUMEN

The consumption of illicit drugs has increased exponentially in recent years and has become a problem that worries both governments and international institutions. The rapid emergence of new compounds, their easy access, the low levels at which these substances are able to produce an effect, and their short time of permanence in the organism make it necessary to develop highly rapid, easy, sensitive, and selective methods for their detection. Currently, the most widely used methods for drug detection are based on techniques that require large measurement times, the use of sophisticated equipment, and qualified personnel. Chromo- and fluorogenic methods are an alternative to those classical procedures.

19.
J Am Chem Soc ; 139(26): 8808-8811, 2017 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-28625064

RESUMEN

A naphthalimide-based two-photon probe (AHGa) for the detection of cell senescence is designed. The probe contains a naphthalimide core, an l-histidine methyl ester linker, and an acetylated galactose bonded to one of the aromatic nitrogen atoms of the l-histidine through a hydrolyzable N-glycosidic bond. Probe AHGa is transformed into AH in senescent cells resulting in an enhanced fluorescent emission intensity. In vivo detection of senescence is validated in mice bearing tumor xenografts treated with senescence-inducing chemotherapy.


Asunto(s)
Colorantes Fluorescentes/química , Naftalimidas/química , Neoplasias/tratamiento farmacológico , Fotones , Animales , Senescencia Celular/efectos de los fármacos , Humanos , Ratones , Estándares de Referencia , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Chem Commun (Camb) ; 53(25): 3559-3562, 2017 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-28287228

RESUMEN

Mesoporous silica nanoparticles loaded with fluorescein and capped by a pseudorotaxane, formed between a naphthalene derivative and cyclobis(paraquat-p-phenylene) (CBPQT4+), were used for the selective and sensitive fluorogenic detection of 3,4-methylenedioxymethamphetamine (MDMA).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...