Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Basic Res Cardiol ; 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38639887

RESUMEN

Hypertrophic cardiomyopathy (HCM) constitutes the most common genetic cardiac disorder. However, current pharmacotherapeutics are mainly symptomatic and only partially address underlying molecular mechanisms. Circular RNAs (circRNAs) are a recently discovered class of non-coding RNAs and emerged as specific and powerful regulators of cellular functions. By performing global circRNA-specific next generation sequencing in cardiac tissue of patients with hypertrophic cardiomyopathy compared to healthy donors, we identified circZFPM2 (hsa_circ_0003380). CircZFPM2, which derives from the ZFPM2 gene locus, is a highly conserved regulatory circRNA that is strongly induced in HCM tissue. In vitro loss-of-function experiments were performed in neonatal rat cardiomyocytes, human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), and HCM-patient-derived hiPSC-CMs. A knockdown of circZFPM2 was found to induce cardiomyocyte hypertrophy and compromise mitochondrial respiration, leading to an increased production of reactive oxygen species and apoptosis. In contrast, delivery of recombinant circZFPM2, packaged in lipid-nanoparticles or using AAV-based overexpression, rescued cardiomyocyte hypertrophic gene expression and promoted cell survival. Additionally, HCM-derived cardiac organoids exhibited improved contractility upon CM-specific overexpression of circZFPM2. Multi-Omics analysis further promoted our hypothesis, showing beneficial effects of circZFPM2 on cardiac contractility and mitochondrial function. Collectively, our data highlight that circZFPM2 serves as a promising target for the treatment of cardiac hypertrophy including HCM.

2.
Cell Mol Life Sci ; 81(1): 196, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658440

RESUMEN

Telomeres as the protective ends of linear chromosomes, are synthesized by the enzyme telomerase (TERT). Critically short telomeres essentially contribute to aging-related diseases and are associated with a broad spectrum of disorders known as telomeropathies. In cardiomyocytes, telomere length is strongly correlated with cardiomyopathies but it remains ambiguous whether short telomeres are the cause or the result of the disease. In this study, we employed an inducible CRISPRi human induced pluripotent stem cell (hiPSC) line to silence TERT expression enabling the generation of hiPSCs and hiPSC-derived cardiomyocytes with long and short telomeres. Reduced telomerase activity and shorter telomere lengths of hiPSCs induced global transcriptomic changes associated with cardiac developmental pathways. Consequently, the differentiation potential towards cardiomyocytes was strongly impaired and single cell RNA sequencing revealed a shift towards a more smooth muscle cell like identity in the cells with the shortest telomeres. Poor cardiomyocyte function and increased sensitivity to stress directly correlated with the extent of telomere shortening. Collectively our data demonstrates a TERT dependent cardiomyogenic differentiation defect, highlighting the CRISPRi TERT hiPSCs model as a powerful platform to study the mechanisms and consequences of short telomeres in the heart and also in the context of telomeropathies.


Asunto(s)
Diferenciación Celular , Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Telomerasa , Telómero , Telomerasa/metabolismo , Telomerasa/genética , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/citología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Telómero/metabolismo , Acortamiento del Telómero , Línea Celular
3.
Methods Mol Biol ; 2765: 247-260, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38381344

RESUMEN

This chapter serves as a guide for researchers embarking on circular RNA-based translational studies. It provides a foundation for the successful encapsulation of circular RNA into lipid nanoparticles (LNPs) and facilitates progress in this emerging field. Crucial scientific methods and techniques involved in the formulation process, particle characterization, and downstream processing of circ-LNPs are covered. The production of in vitro transcribed circular RNA-containing LNPs based on a commercially available lipid mix is provided, in addition to the fundamentals for successful encapsulation based on lipid mixes composed of single components. Furthermore, the transfection and validation protocols for the identification of a functional and potentially therapeutic circRNA candidate for initial in vitro verification, before subsequent LNP studies, are explained.

4.
Adv Exp Med Biol ; 1396: 235-254, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36454471

RESUMEN

Cardiovascular diseases (CVDs) are the leading causes of death globally and urgently require new novel therapeutic strategies. Gene therapy is the application of gene modulation technology to treat abnormal gene expression under disease conditions. Viral- and nonviral-based gene delivery systems are the foundation of gene modulation in target cells. Moreover, plasmid- or oligo-based gene modulation tools as well as new advancements in gene editing using CRISPR/Cas technology are currently being tested in a variety of clinical trials. Here, we summarized state-of-the-art gene therapy technologies as well as recent clinical trials and discuss the applications and lessons of gene therapy in CVDs.


Asunto(s)
Enfermedades Cardiovasculares , Humanos , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/terapia , Terapia Genética , Edición Génica , Clonación Molecular , Recuento de Eritrocitos
5.
Eur Heart J ; 43(42): 4496-4511, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-35758064

RESUMEN

AIMS: Cardiotoxicity leading to heart failure (HF) is a growing problem in many cancer survivors. As specific treatment strategies are not available, RNA discovery pipelines were employed and a new and powerful circular RNA (circRNA)-based therapy was developed for the treatment of doxorubicin-induced HF. METHODS AND RESULTS: The circRNA sequencing was applied and the highly species-conserved circRNA insulin receptor (Circ-INSR) was identified, which participates in HF processes, including those provoked by cardiotoxic anti-cancer treatments. Chemotherapy-provoked cardiotoxicity leads to the down-regulation of Circ-INSR in rodents and patients, which mechanistically contributes to cardiomyocyte cell death, cardiac dysfunction, and mitochondrial damage. In contrast, Circ-INSR overexpression prevented doxorubicin-mediated cardiotoxicity in both rodent and human cardiomyocytes in vitro and in a mouse model of chronic doxorubicin cardiotoxicity. Breast cancer type 1 susceptibility protein (Brca1) was identified as a regulator of Circ-INSR expression. Detailed transcriptomic and proteomic analyses revealed that Circ-INSR regulates apoptotic and metabolic pathways in cardiomyocytes. Circ-INSR physically interacts with the single-stranded DNA-binding protein (SSBP1) mediating its cardioprotective effects under doxorubicin stress. Importantly, in vitro transcribed and circularized Circ-INSR mimics also protected against doxorubicin-induced cardiotoxicity. CONCLUSION: Circ-INSR is a highly conserved non-coding RNA which is down-regulated during cardiotoxicity and cardiac remodelling. Adeno-associated virus and circRNA mimics-based Circ-INSR overexpression prevent and reverse doxorubicin-mediated cardiomyocyte death and improve cardiac function. The results of this study highlight a novel and translationally important Circ-INSR-based therapeutic approach for doxorubicin-induced cardiac dysfunction.


Asunto(s)
Cardiotoxicidad , Cardiopatías , Ratones , Animales , Humanos , Cardiotoxicidad/etiología , Cardiotoxicidad/prevención & control , ARN Circular/genética , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Receptor de Insulina/farmacología , Proteómica , Apoptosis , Doxorrubicina/toxicidad , Miocitos Cardíacos/metabolismo , Cardiopatías/inducido químicamente , Cardiopatías/genética , Cardiopatías/prevención & control , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/farmacología , Proteínas Mitocondriales
6.
Mol Ther ; 30(4): 1675-1691, 2022 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-35077859

RESUMEN

Exercise and its regulated molecules have myocardial protective effects against cardiac ischemia/reperfusion (I/R) injury. The muscle-enriched miR-486 was previously identified to be upregulated in the exercised heart, which prompted us to investigate the functional roles of miR-486 in cardiac I/R injury and to further explore its potential in contributing to exercise-induced protection against I/R injury. Our data showed that miR-486 was significantly downregulated in the heart upon cardiac I/R injury. Both preventive and therapeutic interventions of adeno-associated virus 9 (AAV9)-mediated miR-486 overexpression could reduce cardiac I/R injury. Using AAV9 expressing miR-486 with a cTnT promoter, we further demonstrated that cardiac muscle cell-targeted miR-486 overexpression was also sufficient to protect against cardiac I/R injury. Consistently, miR-486 was downregulated in oxygen-glucose deprivation/reperfusion (OGDR)-stressed cardiomyocytes, while upregulating miR-486 inhibited cardiomyocyte apoptosis through PTEN and FoxO1 inhibition and AKT/mTOR activation. Finally, we observed that miR-486 was necessary for exercise-induced protection against cardiac I/R injury. In conclusion, miR-486 is protective against cardiac I/R injury and myocardial apoptosis through targeting of PTEN and FoxO1 and activation of the AKT/mTOR pathway, and mediates the beneficial effect of exercise for myocardial protection. Increasing miR-486 might be a promising therapeutic strategy for myocardial protection.


Asunto(s)
MicroARNs , Daño por Reperfusión Miocárdica , Apoptosis/genética , Humanos , Isquemia/metabolismo , MicroARNs/metabolismo , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/prevención & control , Miocitos Cardíacos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
7.
Mol Ther ; 30(3): 1265-1274, 2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-34856383

RESUMEN

Physiological and pathological cardiovascular processes are tightly regulated by several cellular mechanisms. Non-coding RNAs, including long non-coding RNAs (lncRNAs), represent one important class of molecules involved in regulatory processes within the cell. The lncRNA non-coding repressor of NFAT (NRON) was described as a repressor of the nuclear factor of activated T cells (NFAT) in different in vitro studies. Although the calcineurin/NFAT-signaling pathway is one of the most important pathways in pathological cardiac hypertrophy, a potential regulation of hypertrophy by NRON in vivo has remained unclear. Applying subcellular fractionation and RNA fluorescence in situ hybridization (RNA-FISH), we found that, unlike what is known from T cells, in cardiomyocytes, NRON predominantly localizes to the nucleus. Hypertrophic stimulation in neonatal mouse cardiomyocytes led to a downregulation of NRON, while NRON overexpression led to an increase in expression of hypertrophic markers. To functionally investigate NRON in vivo, we used a mouse model of transverse aortic constriction (TAC)-induced hypertrophy and performed NRON gain- and loss-of-function experiments. Cardiomyocyte-specific NRON overexpression in vivo exacerbated TAC-induced hypertrophy, whereas cardiomyocyte-specific NRON deletion attenuated cardiac hypertrophy in mice. Heart weight, cardiomyocyte cell size, hypertrophic marker gene expression, and left ventricular mass showed a NRON-dependent regulation upon TAC-induced hypertrophy. In line with this, transcriptome profiling revealed an enrichment of anti-hypertrophic signaling pathways upon NRON-knockout during TAC-induced hypertrophy. This set of data refutes the hypothesized anti-hypertrophic role of NRON derived from in vitro studies in non-cardiac cells and suggests a novel regulatory function of NRON in the heart in vivo.


Asunto(s)
ARN Largo no Codificante , Animales , Calcineurina/genética , Calcineurina/metabolismo , Cardiomegalia/metabolismo , Células Cultivadas , Hibridación Fluorescente in Situ , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
8.
Mol Ther ; 29(4): 1395-1410, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33388418

RESUMEN

Doxorubicin is one of the most potent chemotherapeutic agents. However, its clinical use is restricted due to the severe risk of cardiotoxicity, partially attributed to elevated production of reactive oxygen species (ROS). Telomerase canonically maintains telomeres during cell division but is silenced in adult hearts. In non-dividing cells such as cardiomyocytes, telomerase confers pro-survival traits, likely owing to the detoxification of ROS. Therefore, we hypothesized that pharmacological overexpression of telomerase may be used as a therapeutic strategy for the prevention of doxorubicin-induced cardiotoxicity. We used adeno-associated virus (AAV)-mediated gene therapy for long-term expression of telomerase in in vitro and in vivo models of doxorubicin-induced cardiotoxicity. Overexpression of telomerase protected the heart from doxorubicin-mediated apoptosis and rescued cardiac function, which was accompanied by preserved cardiomyocyte size. At the mechanistic level, we observed altered mitochondrial morphology and dynamics in response to telomerase expression. Complementary in vitro experiments confirmed the anti-apoptotic effects of telomerase overexpression in human induced pluripotent stem cell-derived cardiomyocytes after doxorubicin treatment. Strikingly, elevated levels of telomerase translocated to the mitochondria upon doxorubicin treatment, which helped to maintain mitochondrial function. Thus, telomerase gene therapy could be a novel preventive strategy for cardiotoxicity by chemotherapy agents such as the anthracyclines.


Asunto(s)
Cardiotoxicidad/genética , Doxorrubicina/efectos adversos , Neoplasias/tratamiento farmacológico , Telomerasa/genética , Animales , Apoptosis/efectos de los fármacos , Cardiotoxicidad/prevención & control , Cardiotoxicidad/terapia , Dependovirus/genética , Doxorrubicina/farmacología , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Vectores Genéticos/genética , Vectores Genéticos/farmacología , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Miocitos Cardíacos/efectos de los fármacos , Neoplasias/complicaciones , Neoplasias/genética , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Telomerasa/farmacología
9.
J Mol Cell Cardiol ; 148: 46-49, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32891636

RESUMEN

The World Health Organization (WHO) declared coronavirus disease 2019 (COVID-19) as a public health emergency of international concern as more than 15 million cases were reported by 24th July 2020. Angiotensin-converting enzyme 2 (ACE2) is a COVID-19 entry receptor regulating host cell infection. A recent study reported that ACE2 is expressed in cardiomyocytes. In this study, we aimed to explore if there are microRNA (miRNA) molecules which target ACE2 and which may be exploited to regulate the SARS-CoV-2 receptor. Our data reveal that both Ace2 mRNA and Ace2 protein levels are inhibited by miR-200c in rat primary cardiomyocytes and importantly, in human iPSC-derived cardiomyocytes. We report the first miRNA candidate that can target ACE2 in cardiomyocytes and thus may be exploited as a preventive strategy to treat cardiovascular complications of COVID-19.


Asunto(s)
Enzima Convertidora de Angiotensina 2/genética , COVID-19/genética , MicroARNs/genética , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Animales , COVID-19/virología , Células Cultivadas , Simulación por Computador , Fibroblastos/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Células Madre Pluripotentes Inducidas/citología , Ratones , Miocitos Cardíacos/virología , Ratas , Reacción en Cadena en Tiempo Real de la Polimerasa , SARS-CoV-2
10.
FASEB J ; 34(3): 4403-4414, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31999007

RESUMEN

The role of circular RNAs (circRNAs) as biomarkers remains poorly characterized. Here, we investigated the performance of the circRNA hsa_circ_0001445 as a biomarker of coronary artery disease (CAD) in a real-world clinical practice setting. Plasma hsa_circ_0001445 was measured in a study population of 200 consecutive patients with suspected stable CAD who had undergone coronary computed tomographic angiography (CTA). Multivariable logistic models were constructed combining conventional risk factors with established biomarkers and hsa_circ_0001445. Model robustness was internally validated by the bootstrap technique. Biomarker accuracy was evaluated using the C-index. The integrated discrimination improvement (IDI) and net reclassification improvement (NRI) were also calculated. Risk groups were developed via classification tree models. The stability of plasma hsa_circ_0001445 was evaluated under different clinical conditions. hsa_circ_0001445 levels were associated with higher coronary atherosclerosis extent and severity with a 2-fold increase across tertiles (28.4%-50.0%). Levels of hsa_circ_0001445 were proportional to coronary atherosclerotic burden, even after comprehensive adjustment for cardiovascular risk factors, medications, and established biomarkers (fully adjusted OR = 0.432 for hsa_circ_0001445 as a continuous variable and fully adjusted OR = 0.277 for hsa_circ_0001445 as a binary variable). The classification of patients was improved with the incorporation of hsa_circ_0001445 into a base clinical model (CM) composed of conventional cardiovascular risk factors, showing an IDI of 0.047 and NRI of 0.482 for hsa_circ_0001445 as a continuous variable and an IDI of 0.056 and NRI of 0.373 for hsa_circ_0001445 as a binary variable. A trend toward higher discrimination capacity was also observed (C-indexCM  = 0.833, C-indexCM+continuous hsa_circ_0001445  = 0.856 and C-indexCM+binary hsa_circ_0001445  = 0.855). Detailed analysis of stability showed that hsa_circ_0001445 was present in plasma in a remarkably stable form. In vitro, hsa_circ_0001445 was downregulated in extracellular vesicles secreted by human coronary smooth muscle cells upon exposure to atherogenic conditions. In patients with suspected stable CAD referred for coronary CTA, plasma hsa_circ_0001445 improves the identification of coronary artery atherosclerosis.


Asunto(s)
Biomarcadores/sangre , Enfermedad de la Arteria Coronaria/sangre , Enfermedad de la Arteria Coronaria/metabolismo , ARN Circular/sangre , ARN Circular/metabolismo , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Análisis Multivariante , Miocitos del Músculo Liso/metabolismo , Estabilidad del ARN/genética , Estabilidad del ARN/fisiología
11.
Sci Rep ; 9(1): 15277, 2019 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-31649303

RESUMEN

Fabry disease is an X-linked deficiency of the lysosomal hydrolase alpha-galactosidase A (alpha-Gal). This results in an accumulation of globotriaosylceramide (GL-3/Gb3) in a variety of cells with subsequent functional impairment. The continuous progress of FD often leads to decreased quality of life and premature death caused by multi-organic complications. The overall aim of our study was to determine the amount of circulating miRNAs in Fabry patients and to test whether ERT would alter the level of individual circulating miRNAs. We used miRNA sequencing by the HTG EdgeSeq System to identify the circulating miRNA pool from Fabry patients with and without enzyme replacement therapy (n = 6). In total, 296 miRNAs in serum of patients were identified. Among them 9 miRNAs were further evaluated in extra serum samples (n = 31) using real-time qPCR and 6 of them showed significant differential expression. The resulting miRNA pattern may help to better understand mechanisms involved in the beneficial effects of ERT and these new miRNA markers could help to estimate the efficacy of ERT or to identify Fabry patients with specific need for ERT.


Asunto(s)
MicroARN Circulante/sangre , Terapia de Reemplazo Enzimático/métodos , Enfermedad de Fabry/sangre , alfa-Galactosidasa/uso terapéutico , Adolescente , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Resultado del Tratamiento , Adulto Joven
12.
Nat Rev Cardiol ; 16(11): 661-674, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31186539

RESUMEN

Cardiovascular diseases are the leading cause of death globally and are associated with increasing financial expenditure. With the availability of next-generation sequencing technologies since the early 2000s, non-coding RNAs such as microRNAs, long non-coding RNAs and circular RNAs have been assessed as potential therapeutic targets for numerous diseases, including cardiovascular diseases. In this Review, we summarize current approaches employed to screen for novel coding and non-coding RNA candidates with diagnostic and therapeutic potential in cardiovascular disease, including next-generation sequencing, functional high-throughput RNA screening and single-cell sequencing technologies. Furthermore, we highlight viral-based delivery tools that have been widely used to evaluate the therapeutic utility of both coding and non-coding RNAs in the context of cardiovascular disease. Finally, we discuss the potential of using oligonucleotide-based molecular products such as modified RNA, small interfering RNA and RNA mimics/inhibitors for the treatment of cardiovascular diseases. Given that many non-coding RNAs have not yet been functionally annotated, the number of potential RNA diagnostic and therapeutic targets for cardiovascular diseases will continue to expand for years to come.


Asunto(s)
Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/terapia , Terapia Genética/métodos , MicroARNs/sangre , ARN Circular/metabolismo , ARN Largo no Codificante/metabolismo , Animales , Biomarcadores/metabolismo , Enfermedades Cardiovasculares/metabolismo , Técnicas de Transferencia de Gen , Ensayos Analíticos de Alto Rendimiento , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , RNA-Seq
13.
Cell Death Differ ; 25(2): 307-318, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29099486

RESUMEN

The mammalian cell cycle is a complex and tightly controlled event. Myriads of different control mechanisms are involved in its regulation. Long non-coding RNAs (lncRNA) have emerged as important regulators of many cellular processes including cellular proliferation. However, a more global and unbiased approach to identify lncRNAs with importance for cell proliferation is missing. Here, we present a lentiviral shRNA library-based approach for functional lncRNA profiling. We validated our library approach in NIH3T3 (3T3) fibroblasts by identifying lncRNAs critically involved in cell proliferation. Using stringent selection criteria we identified lncRNA NR_015491.1 out of 3842 different RNA targets represented in our library. We termed this transcript Ntep (non-coding transcript essential for proliferation), as a bona fide lncRNA essential for cell cycle progression. Inhibition of Ntep in 3T3 and primary fibroblasts prevented normal cell growth and expression of key fibroblast markers. Mechanistically, we discovered that Ntep is important to activate P53 concomitant with increased apoptosis and cell cycle blockade in late G2/M. Our findings suggest Ntep to serve as an important regulator of fibroblast proliferation and function. In summary, our study demonstrates the applicability of an innovative shRNA library approach to identify long non-coding RNA functions in a massive parallel approach.


Asunto(s)
Proliferación Celular , ARN Largo no Codificante/metabolismo , ARN Interferente Pequeño/metabolismo , Células 3T3 , Animales , Células Cultivadas , Biblioteca de Genes , Masculino , Ratones , Ratones Endogámicos C57BL , ARN Interferente Pequeño/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA