Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
mBio ; 15(8): e0171824, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39012147

RESUMEN

Aromatic compounds are an important source of commodity chemicals traditionally produced from fossil fuels. Aromatics derived from plant lignin can potentially be converted into commodity chemicals through depolymerization followed by microbial funneling of monomers and low molecular weight oligomers. This study investigates the catabolism of the ß-5 linked aromatic dimer dehydrodiconiferyl alcohol (DC-A) by the bacterium Novosphingobium aromaticivorans. We used genome-wide screens to identify candidate genes involved in DC-A catabolism. Subsequent in vivo and in vitro analyses of these candidate genes elucidated a catabolic pathway composed of four required gene products and several partially redundant dehydrogenases that convert DC-A to aromatic monomers that can be funneled into the central aromatic metabolic pathway of N. aromaticivorans. Specifically, a newly identified γ-formaldehyde lyase, PcfL, opens the phenylcoumaran ring to form a stilbene and formaldehyde. A lignostilbene dioxygenase, LsdD, then cleaves the stilbene to generate the aromatic monomers vanillin and 5-formylferulate (5-FF). We also showed that the aldehyde dehydrogenase FerD oxidizes 5-FF before it is decarboxylated by LigW, yielding ferulic acid. We found that some enzymes involved in the ß-5 catabolism pathway can act on multiple substrates and that some steps in the pathway can be mediated by multiple enzymes, providing new insights into the robust flexibility of aromatic catabolism in N. aromaticivorans. A comparative genomic analysis predicted that the newly discovered ß-5 aromatic catabolic pathway is common within the order Sphingomonadales. IMPORTANCE: In the transition to a circular bioeconomy, the plant polymer lignin holds promise as a renewable source of industrially important aromatic chemicals. However, since lignin contains aromatic subunits joined by various chemical linkages, producing single chemical products from this polymer can be challenging. One strategy to overcome this challenge is using microbes to funnel a mixture of lignin-derived aromatics into target chemical products. This approach requires strategies to cleave the major inter-unit linkages of lignin to release monomers for funneling into valuable products. In this study, we report newly discovered aspects of a pathway by which the Novosphingobium aromaticivorans DSM12444 catabolizes aromatics joined by the second most common inter-unit linkage in lignin, the ß-5 linkage. This work advances our knowledge of aromatic catabolic pathways, laying the groundwork for future metabolic engineering of this and other microbes for optimized conversion of lignin into products.


Asunto(s)
Redes y Vías Metabólicas , Sphingomonadaceae , Sphingomonadaceae/metabolismo , Sphingomonadaceae/genética , Sphingomonadaceae/enzimología , Redes y Vías Metabólicas/genética , Lignina/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Hidrocarburos Aromáticos/metabolismo
2.
J Integr Plant Biol ; 66(8): 1658-1674, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39031878

RESUMEN

The biosynthesis of cellulose, lignin, and hemicelluloses in plant secondary cell walls (SCWs) is regulated by a hierarchical transcriptional regulatory network. This network features orthologous transcription factors shared between poplar and Arabidopsis, highlighting a foundational similarity in their genetic regulation. However, knowledge on the discrepant behavior of the transcriptional-level molecular regulatory mechanisms between poplar and Arabidopsis remains limited. In this study, we investigated the function of PagMYB128 during wood formation and found it had broader impacts on SCW formation compared to its Arabidopsis ortholog, AtMYB103. Transgenic poplar trees overexpressing PagMYB128 exhibited significantly enhanced xylem development, with fiber cells and vessels displaying thicker walls, and an increase in the levels of cellulose, lignin, and hemicelluloses in the wood. In contrast, plants with dominant repression of PagMYB128 demonstrated the opposite phenotypes. RNA sequencing and reverse transcription - quantitative polymerase chain reaction showed that PagMYB128 could activate SCW biosynthetic gene expression, and chromatin immunoprecipitation along with yeast one-hybrid, and effector-reporter assays showed this regulation was direct. Further analysis revealed that PagSND1 (SECONDARY WALL-ASSOCIATED NAC-DOMAIN PROTEIN1) directly regulates PagMYB128 but not cell wall metabolic genes, highlighting the pivotal role of PagMYB128 in the SND1-driven regulatory network for wood development, thereby creating a feedforward loop in SCW biosynthesis.


Asunto(s)
Pared Celular , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Populus , Madera , Populus/genética , Populus/metabolismo , Populus/crecimiento & desarrollo , Pared Celular/metabolismo , Madera/crecimiento & desarrollo , Madera/genética , Madera/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Xilema/metabolismo , Xilema/genética , Lignina/biosíntesis , Lignina/metabolismo , Plantas Modificadas Genéticamente , Genes de Plantas , Celulosa/biosíntesis , Celulosa/metabolismo
4.
Plant Physiol ; 194(3): 1370-1382, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-37773018

RESUMEN

Lignin is an abundant polymer in plant secondary cell walls. Prototypical lignins derive from the polymerization of monolignols (hydroxycinnamyl alcohols), mainly coniferyl and sinapyl alcohol, via combinatorial radical coupling reactions and primarily via the endwise coupling of a monomer with the phenolic end of the growing polymer. Hydroxycinnamaldehyde units have long been recognized as minor components of lignins. In plants deficient in cinnamyl alcohol dehydrogenase, the last enzyme in the monolignol biosynthesis pathway that reduces hydroxycinnamaldehydes to monolignols, chain-incorporated aldehyde unit levels are elevated. The nature and relative levels of aldehyde components in lignins can be determined from their distinct and dispersed correlations in 2D 1H-13C-correlated nuclear magnetic resonance (NMR) spectra. We recently became aware of aldehyde NMR peaks, well resolved from others, that had been overlooked. NMR of isolated low-molecular-weight oligomers from biomimetic radical coupling reactions involving coniferaldehyde revealed that the correlation peaks belonged to hydroxycinnamaldehyde-derived benzofuran moieties. Coniferaldehyde 8-5-coupling initially produces the expected phenylcoumaran structures, but the derived phenolic radicals undergo preferential disproportionation rather than radical coupling to extend the growing polymer. As a result, the hydroxycinnamaldehyde-derived phenylcoumaran units are difficult to detect in lignins, but the benzofurans are now readily observed by their distinct and dispersed correlations in the aldehyde region of NMR spectra from any lignin or monolignol dehydrogenation polymer. Hydroxycinnamaldehydes that are coupled to coniferaldehyde can be distinguished from those coupled with a generic guaiacyl end-unit. These benzofuran peaks may now be annotated and reported and their structural ramifications further studied.


Asunto(s)
Acroleína/análogos & derivados , Benzofuranos , Cinamatos , Lignina , Lignina/metabolismo , Aldehídos , Polímeros
5.
Int J Biol Macromol ; 253(Pt 3): 126762, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37683750

RESUMEN

The lignin plays one of the most important roles in plant secondary metabolism. However, it is still unclear how lignin can contribute to the impressive height of wood growth. In this study, C3'H, a rate-limiting enzyme of the lignin pathway, was used as the target gene. C3'H3 was knocked out by CRISPR/Cas9 in Populus tomentosa. Compared with wild-type popular trees, c3'h3 mutants exhibited dwarf phenotypes, collapsed xylem vessels, weakened phloem thickening, decreased hydraulic conductivity and photosynthetic efficiency, and reduced auxin content, except for reduced total lignin content and significantly increased H-subunit lignin. In the c3'h3 mutant, the flavonoid biosynthesis genes CHS, CHI, F3H, DFR, ANR, and LAR were upregulated, and flavonoid metabolite accumulations were detected, indicating that decreasing the lignin biosynthesis pathway enhanced flavonoid metabolic flux. Furthermore, flavonoid metabolites, such as naringenin and hesperetin, were largely increased, while higher hesperetin content suppressed plant cell division. Thus, studying the c3'h3 mutant allows us to deduce that lignin deficiency suppresses tree growth and leads to the dwarf phenotype due to collapsed xylem and thickened phloem, limiting material exchanges and transport.


Asunto(s)
Lignina , Populus , Lignina/metabolismo , Oxigenasas de Función Mixta/metabolismo , Árboles , Populus/metabolismo , Sistemas CRISPR-Cas/genética , Flavonoides/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo
6.
ACS Sustain Chem Eng ; 11(27): 10001-10017, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37448721

RESUMEN

The chemical complexity of lignin remains a major challenge for lignin valorization into commodity and fine chemicals. A knowledge of the lignin features that favor its valorization and which plants produce such lignins can be used in plant selection or to engineer them to produce lignins that are more ideally suited for conversion. Sixteen biomass samples were compositionally surveyed by NMR and analytical degradative methods, and the yields of phenolic monomers following hydrogenolytic depolymerization were assessed to elucidate the key determinants controlling the depolymerization. Hardwoods, including those incorporating monolignol p-hydroxybenzoates into their syringyl/guaiacyl copolymeric lignins, produced high monomer yields by hydrogenolysis, whereas grasses incorporating monolignol p-coumarates and ferulates gave lower yields, on a lignin basis. Softwoods, with their more condensed guaiacyl lignins, gave the lowest yields. Lignins with a high syringyl unit content released elevated monomer levels, with a high-syringyl polar transgenic being particularly striking. Herein, we distinguish phenolic monomers resulting from the core lignin vs those from pendent phenolate esters associated with the biomass cell wall, acylating either polysaccharides or lignins. The basis for these observations is rationalized as a means to select or engineer biomass for optimal conversion to worthy phenolic monomers.

7.
Carbohydr Polym ; 314: 120959, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37173053

RESUMEN

Cellulose, the major component of secondary cell walls, is the most abundant renewable long-chain polymer on earth. Nanocellulose has become a prominent nano-reinforcement agent for polymer matrices in various industries. We report the generation of transgenic hybrid poplar overexpressing the Arabidopsis gibberellin 20-oxidase1 gene driven by a xylem-specific promoter to increase gibberellin (GA) biosynthesis in wood. X-ray diffraction (XRD) and sum frequency generation spectroscopic (SFG) analyses showed that cellulose in transgenic trees was less crystalline, but the crystal size was larger. The nanocellulose fibrils prepared from transgenic wood had an increased size compared to those from wild type. When such fibrils were used as a reinforcing agent in sheet paper preparation, the mechanical strength of the paper was significantly enhanced. Engineering the GA pathway can therefore affect nanocellulose properties, providing a new strategy for expanding nanocellulose applications.


Asunto(s)
Arabidopsis , Populus , Giberelinas , Xilema/genética , Xilema/metabolismo , Oxigenasas de Función Mixta/metabolismo , Madera/metabolismo , Celulosa/química , Arabidopsis/genética , Arabidopsis/metabolismo , Populus/genética , Populus/metabolismo
8.
Int J Biol Macromol ; 228: 178-185, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36529212

RESUMEN

As an emulsifier, lignin exhibits excellent UV resistance on drug-loaded emulsion systems for drug delivery. However, due to the structural variation and complexity of lignins from various origins, their UV shielding performance varies with the techniques for lignin extraction, which impacts properties and the protection efficiency of lignin-based HIPEs (high internal phase emulsions). In this work, lignin nanoparticles, prepared from three lignin preparations of Eucalyptus, were used in HIPEs delivery systems to protect curcumin from degradation by UV radiation. Structures of the lignin preparations were characterized using 2D HSQC (heteronuclear single-quantum coherence) NMR (nuclear magnetic resonance), 31P NMR, and GPC (gel permeation chromatography). The residual curcumin level after 36 h UV exposure in the nanolignin-based HIPEs was over 72 %, much higher than that (< 10 % after 24 h UV exposure) in the oil phase without lignin, indicating that the nanolignin-based HIPEs with enhanced UV shielding ability protect curcumin better. Of the three lignin preparations, AL (alkali lignin), with the lowest molecular weight, highest contents of phenolic hydroxyl and carboxyl groups, and highest S/G ratio, displayed the best anti-UV radiation ability and the most uniform nanoparticle size.


Asunto(s)
Curcumina , Lignina , Lignina/química , Curcumina/farmacología , Curcumina/química , Emulsiones/química , Emulsionantes , Espectroscopía de Resonancia Magnética
9.
Nat Plants ; 8(5): 500-512, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35534720

RESUMEN

To date, little is known about the evolution of fern genomes, with only two small genomes published from the heterosporous Salviniales. Here we assembled the genome of Alsophila spinulosa, known as the flying spider-monkey tree fern, onto 69 pseudochromosomes. The remarkable preservation of synteny, despite resulting from an ancient whole-genome duplication over 100 million years ago, is unprecedented in plants and probably speaks to the uniqueness of tree ferns. Our detailed investigations into stem anatomy and lignin biosynthesis shed new light on the evolution of stem formation in tree ferns. We identified a phenolic compound, alsophilin, that is abundant in xylem, and we provided the molecular basis for its biosynthesis. Finally, analysis of demographic history revealed two genetic bottlenecks, resulting in rapid demographic declines of A. spinulosa. The A. spinulosa genome fills a crucial gap in the plant genomic landscape and helps elucidate many unique aspects of tree fern biology.


Asunto(s)
Atelinae , Helechos , Arañas , Animales , Atelinae/genética , Helechos/genética , Genoma de Planta , Filogenia , Arañas/genética
10.
Glob Chall ; 6(4): 2100130, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35433027

RESUMEN

Lignin condensation reactions are hard to avoid or control during separation, which is a deterrent to lignin isolation and post-conversation, especially for the full utilization of lignocelluloses. Selective protection of ß-aryl ether linkages in the isolation process is crucial to lignin valorization. Herein, a two-step acid/alkali separation method assisted with l-cysteine for eucalyptus lignin separation is developed, and the isolated l-cysteine lignins (LCLs) are comprehensively characterized by 2D NMR, 31P NMR, thioacidolysis, etc. Compared to the two-step control treatment, a much higher ß-O-4 content is preserved without reducing the separation efficiency assisted by l-cysteine, which is also significantly higher than alkali lignin and kraft lignin. The results of hydrogenolysis show that LCLs generate a much higher monomer yield than that of control sample. Structural analysis of LCLs suggests that lignin condensation reaction, to some extent, is suppressed by adding l-cysteine during the two-step acid/alkali separation. Further, mechanistic studies using dimeric model compound reveals that l-cysteine may be the α-carbon protective agent in the two-step separation. The role of l-cysteine in the two-step lignin isolation method provides novel insights to the selective fractionation of lignin from biomass, especially for the full valorization of lignocellulosic biomass.

11.
Plant Cell Physiol ; 63(6): 744-754, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35275214

RESUMEN

The complexity of lignin structure impedes efficient cell wall digestibility. Native lignin is composed of a mixture of three dominant monomers, coupled together through a variety of linkages. Work over the past few decades has demonstrated that lignin composition can be altered through a variety of mutational and transgenic approaches such that the polymer is derived almost entirely from a single monomer. In this study, we investigated changes to lignin structure and digestibility in Arabidopsis thaliana in near-single-monolignol transgenics and mutants and determined whether novel monolignol conjugates, produced by a FERULOYL-CoA MONOLIGNOL TRANSFERASE (FMT) or a p-COUMAROYL-CoA MONOLIGNOL TRANSFERASE (PMT), could be integrated into these novel polymers to further improve saccharification efficiency. Monolignol conjugates, including a new conjugate of interest, p-coumaryl p-coumarate, were successfully integrated into high-H, high-G and high-S lignins in A. thaliana. Regardless of lignin composition, FMT- and PMT-expressing plants produced monolignol ferulates and monolignol p-coumarates, respectively, and incorporated them into their lignin. Through the production and incorporation of monolignol conjugates into near-single-monolignol lignins, we demonstrated that substrate availability, rather than monolignol transferase substrate preference, is the most important determining factor in the production of monolignol conjugates, and lignin composition helps dictate cell wall digestibility.


Asunto(s)
Arabidopsis , Lignina , Arabidopsis/metabolismo , Pared Celular/metabolismo , Lignina/metabolismo , Transferasas/análisis , Transferasas/metabolismo
12.
NPJ Syst Biol Appl ; 8(1): 3, 2022 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-35087094

RESUMEN

Morphological profiling is an omics-based approach for predicting intracellular targets of chemical compounds in which the dose-dependent morphological changes induced by the compound are systematically compared to the morphological changes in gene-deleted cells. In this study, we developed a reliable high-throughput (HT) platform for yeast morphological profiling using drug-hypersensitive strains to minimize compound use, HT microscopy to speed up data generation and analysis, and a generalized linear model to predict targets with high reliability. We first conducted a proof-of-concept study using six compounds with known targets: bortezomib, hydroxyurea, methyl methanesulfonate, benomyl, tunicamycin, and echinocandin B. Then we applied our platform to predict the mechanism of action of a novel diferulate-derived compound, poacidiene. Morphological profiling of poacidiene implied that it affects the DNA damage response, which genetic analysis confirmed. Furthermore, we found that poacidiene inhibits the growth of phytopathogenic fungi, implying applications as an effective antifungal agent. Thus, our platform is a new whole-cell target prediction tool for drug discovery.


Asunto(s)
Descubrimiento de Drogas , Saccharomyces cerevisiae , Reproducibilidad de los Resultados , Saccharomyces cerevisiae/genética
14.
Front Plant Sci ; 12: 695223, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34249068

RESUMEN

Lignin is one of the major components of xylem cell walls in tree stems. The lignin in the wood of most flowering plants (dicotyledonous angiosperms) is typically polymerized from three monolignol precursors, coniferyl alcohol, sinapyl alcohol, and p-coumaroyl alcohol, resulting in guaiacyl (G), syringyl (S), and hydroxyphenyl (H) subunits, respectively. In this study, we focus on the transcriptional regulation of a coniferaldehyde 5-hydroxylase (CAld5H2) gene, which encodes a key enzyme for sinapyl alcohol biosynthesis. We carried out a yeast one-hybrid (Y1H) screen to identify candidate upstream transcription factors (TFs) regulating CAld5H2. We obtained 12 upstream TFs as potential regulators of CAld5H2. One of these TF genes, BLH6a, encodes a BEL1-like homeodomain (BLH) protein and negatively regulated the CAld5H2 promoter activity. The direct regulation of CAld5H2 promoter by BLH6a was supported by chromatin immunoprecipitation-quantitative polymerase chain reaction (ChIP-qPCR) and dominant repression of BLH6a in transgenic plants. Luciferase complementation imaging analyses showed extensive protein-protein interactions among these 12 TFs. We propose that BLH6a is a negative regulator of CAld5H2, which acts through combinatorial regulation of multiple TFs for sinapyl alcohol (S monolignol) biosynthesis in poplar.

15.
Anal Chem ; 92(19): 13101-13109, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32885955

RESUMEN

Lignocellulosic biomass is mainly composed of polysaccharides and lignin. The complexity and diversity of the plant cell wall polymers makes it difficult to isolate the components in pure form for characterization. Many current approaches to analyzing the structure of lignocellulose, which involve sequential extraction and characterization of the resulting fractions, are time-consuming and labor-intensive. The present study describes a new and facile system for rationally derivatizing and dissolving coarsely ground plant cell wall materials. Using ionic liquids (EmimAc) and dichloroacetyl chloride as a solvent/reagent produced mildly acetylated whole cell walls without significant degradation. The acetylated products were soluble in DMSO-d6 from which they can be characterized by solution-state two-dimensional nuclear magnetic resonance (2D NMR) spectrometry. A distinct advantage of the procedure is that it realizes the dissolution of whole lignocellulosic materials without requiring harsh ball milling, thereby allowing the acquisition of high-resolution 2D NMR spectra to revealing structural details of the main components (lignin and polysaccharides). The method is therefore beneficial to understanding the composition and structure of biomass aimed at its improved utilization.


Asunto(s)
Pared Celular/química , Dimetilsulfóxido/química , Líquidos Iónicos/química , Lignina/análisis , Polisacáridos/análisis , Populus/química , Acetatos/química , Acetilación , Espectroscopía de Resonancia Magnética , Populus/citología , Solubilidad , Soluciones
16.
ChemSusChem ; 13(20): 5549-5555, 2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-32812399

RESUMEN

Phenolation is a commonly used method to improve the reactivity of lignin for various applications. In this study, resinol lignin models (syringaresinol and pinoresinol) and eucalyptus alkali lignin were treated under acid-catalyzed phenolation conditions to investigate the products derived from resinol (ß-ß) structures of lignins. The phenolation products were characterized by means of GC-MS and NMR spectroscopy following separation using flash chromatography and thin-layer chromatography. A series of new naphthalene products were identified from phenolation of syringaresinol, and the corresponding guaiacyl analogs were also identified by GC-MS. The C1-Cα bond of these resinol compounds was cleaved to release syringol or guaiacol during phenolation. In addition, diphenylmethane products formed from phenol or phenol and syringol/guaiacol were found in the phenolation products. Comparatively, more naphthalene products were obtained by phenolation from syringaresinol than those obtained from pinoresinol. HSQC NMR characterization of the phenolated alkali lignin revealed that naphthalene structures formed in the phenolated lignin.

17.
J Exp Bot ; 71(18): 5469-5483, 2020 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-32474603

RESUMEN

The function of the transcription factor KNOTTED ARABIDOPSIS THALIANA7 (KNAT7) is still unclear since it appears to be either a negative or a positive regulator for secondary cell wall deposition with its loss-of-function mutant displaying thicker interfascicular and xylary fiber cell walls but thinner vessel cell walls in inflorescence stems. To explore the exact function of KNAT7, class II KNOTTED1-LIKE HOMEOBOX (KNOX II) genes in Arabidopsis including KNAT3, KNAT4, and KNAT5 were studied together. By chimeric repressor technology, we found that both KNAT3 and KNAT7 repressors exhibited a similar dwarf phenotype. Both KNAT3 and KNAT7 genes were expressed in the inflorescence stems and the knat3 knat7 double mutant exhibited a dwarf phenotype similar to the repressor lines. A stem cross-section of knat3 knat7 displayed an enhanced irregular xylem phenotype as compared with the single mutants, and its cell wall thickness in xylem vessels and interfascicular fibers was significantly reduced. Analysis of cell wall chemical composition revealed that syringyl lignin was significantly decreased while guaiacyl lignin was increased in the knat3 knat7 double mutant. Coincidently, the knat3 knat7 transcriptome showed that most lignin pathway genes were activated, whereas the syringyl lignin-related gene Ferulate 5-Hydroxylase (F5H) was down-regulated. Protein interaction analysis revealed that KNAT3 and KNAT7 can form a heterodimer, and KNAT3, but not KNAT7, can interact with the key secondary cell wall formation transcription factors NST1/2, which suggests that the KNAT3-NST1/2 heterodimer complex regulates F5H to promote syringyl lignin synthesis. These results indicate that KNAT3 and KNAT7 synergistically work together to promote secondary cell wall biosynthesis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Lignina , Proteínas Nucleares , Proteínas Represoras/metabolismo , Factores de Transcripción/genética
18.
Int J Biol Macromol ; 152: 411-417, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32097737

RESUMEN

Soda process is one of the most important pulping processes in paper industry producing large quantities of alkali lignins that can afford plenty of biofuels, aromatic chemicals and materials. However, the structural and size-related heterogeneities and complexities hinder the development in these directions. Herein, we report new insights into the structure of alkali lignin, through investigating the formation and transformation of enol ether and arylglycerol structures that are significant responsible for the structural transformation from native lignin to alkali lignin. Four-type enol ethers composed of G/S units in hardwood alkali lignin were identified by 2D HSQC NMR. A series of alkali lignins prepared by alkali treatment of eucalyptus cellulolytic enzyme lignin under various temperatures were analyzed by 2D HSQC NMR, 31P NMR and gel permeation chromatography (GPC). Upon these analyses and related model compound studies, it was found that the arylglycerols formed from native ß-O-4 linkages tends to be oxidized with the further degradation of aryl ether bonds, and that the enol ether linkages are facile to be hydrolyzed or oxidized in the air. These insights improve the mechanistic understanding for the structural evolution and the diversity of alkali lignins and will aid the development of further lignin valorization strategies.


Asunto(s)
Éteres/química , Eucalyptus/química , Glicerol/química , Lignina/química , Oxígeno/química , Fenol/química , Madera/química , Álcalis , Cromatografía , Cromatografía de Gases y Espectrometría de Masas , Hidrólisis , Espectroscopía de Resonancia Magnética , Estructura Molecular , Peso Molecular , Oxidación-Reducción , Temperatura
19.
Polymers (Basel) ; 12(1)2020 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-31948026

RESUMEN

γ-valerolactone (GVL)/H2O/acid solvent mixtures has been used in chemical pretreatment of lignocellulosic biomass, it was claimed that GVL lignins were structurally close to proto (native) lignins, or having low molecular weight with narrow polydispersity, however, the structural changes of GVL lignins have not been investigated. In this study, ß-O-4 (ß-aryl ether, GG), ß-5 (phenylcoumaran), and ß-ß (resinol) lignin model compounds were treated by an acidic GVL-H2O solvent system, a promising pretreatment of lignocellulose for biomass utilization, to investigate the structural changes possibly related to the lignin involved. NMR characterization of the products isolated from the treated GG indicated that a phenyl dihydrobenzofuran, having typical C-H correlations at δC/δH 50.74/4.50 and 93.49/4.60 ppm in its HSQC spectrum, was produced from GG. In the pretreatment, the released formaldehyde from GG reacted fast with GG to form a novel 1,3-dioxane intermediate whose characteristic HSQC signals were: δC/δH 94.15-94.48/4.81-5.18 ppm and 80.82-83.34/4.50-4.94 ppm. The ß-5 model, dihydrodehydrodiconiferyl alcohol, was converted into phenylcoumarone and stilbene having benzaldehyde that resulted from the allyl alcohol side chain. The ß-ß model, syringaresinol, was isomerized to form a mixture of syringaresinol, epi-, and dia-syringaresinol although being degraded slightly.

20.
Biomolecules ; 10(2)2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31979323

RESUMEN

Various ferulic acid (FA) dimers occurring in plant cell walls, such as 8-5-, 8-O-4-, 5-5-, and 8-8- coupled dimers, are effective antioxidants and potential antimicrobials. It is necessary to access these diferulates as reference compounds to validate those isolated from plants. 3,6-bis(4-hydroxy-3-methoxyphenyl)-tetrahydrofuro-[3,4-c]furan-1,4-dione, a 8-8-coupled FA dilactone generated from ferulic acid via radical coupling, has been used to synthesize 8-8-coupled FA dimers although few reports investigated the distribution of products and mechanisms involved in the transformation of FA dilactone. In this work, the FA dilactone, obtained from FA by a peroxidase-catalyzed radical coupling, was reacted under various base/acid conditions. Effects of reaction conditions and workup procedures on the distribution of products were investigated by GC-MS. The isolated products from such treatments of FA dilactone were characterized by NMR. New derivatives of FA dimer including 2-(4-hydroxy-3-methoxybenzylidene)-3-(hydroxyl-(4-hydroxy-3-methoxyphenyl)methyl)succinic acid and 2-(bis(4-hydroxy-3-methoxyphenyl)-methyl)-succinic acid were produced from NaOH treatment. Another novel 8-8-coupled cyclic FA dimer, diethyl 6-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-7-methoxy-1,2-dihydronaphthalene-2,3-dicarboxylate was identified in products from FA dilactone treated by dry HCl in absolute ethanol. Mechanisms involved in such transformations were proposed.


Asunto(s)
Antiinfecciosos/farmacología , Antioxidantes/farmacología , Ácidos Cumáricos/química , Catálisis , Cromatografía por Intercambio Iónico , Dimerización , Etanol/química , Lactonas/química , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Peroxidasa/química , Valores de Referencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...