Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros












Intervalo de año de publicación
1.
Front Nutr ; 11: 1370975, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38606017

RESUMEN

With the development of animal husbandry, the shortage of animal feedstuffs has become serious. Dietary fiber plays a crucial role in regulating animal health and production performance. The aim of this study was to investigate the effects of three kinds of corn straw-saccharification fibers (CSSF) such as high-fiber and low-saccharification (HFLS), medium-fiber and medium-saccharification (MFMS), low-fiber and high-saccharification (LFHS) CSSF on the reproductive performance of sows. Thirty-two primiparous Yorkshire sows were randomly assigned to 4 groups, 8 sows for each group. Group A was the basal diet as the control group; groups B - D were added with 6% HFLSCSSF, 6% MFMSCSSF and 6% LFHSCSSF to replace some parts of corn meal and wheat bran in the basal diet, respectively. The experimental period was from day 85 of gestation to the end of lactation (day 25 post-farrowing). The results showed that 6% LFHSCSSF addition significantly increased number of total born (alive) piglets, litter weight at birth (p < 0.05), whereas three kinds of CSSF significantly decreased backfat thickness of sows during gestation (p < 0.001), compared with the control group. Furthermore, CSSF improved the digestibility of crude protein, ether extract and fiber for sows. In addition, the levels of total cholesterol, total triglycerides, and high-density lipoprotein cholesterol in serum of sows were decreased by different kinds of CSSF. Further analysis revealed that CSSF regulated lipid metabolism through adjusting the serum metabolites such as 4-pyridoxic acid, phosphatidyl cholines and L-tyrosine. In summary, CSSF addition to the diets of sows during late gestation and lactation regulated lipid metabolism and improved reproductive performance of sows. This study provided a theoretical basis for the application of corn straw in sow diets.

2.
Poult Sci ; 102(1): 102302, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36436373

RESUMEN

The purpose of this experiment was to determine the effectiveness of compound feed additive (CFA) to replace antibiotics for broiler production. A total of 350 one-day-old Arbor Acres broilers were randomly divided into 7 groups, 5 replications in each group and 10 broilers in each replication. Group A was the control; group B was supplemented with 75 mg/kg chlortetracycline; groups C, D, and E were supplemented with 0.03, 0.06, and 0.09% CFA including glucose oxidase, curcumin, and Lactobacillus acidophilus; group F was supplemented with 0.03% CFA plus 0.50% glucose; group G was supplemented with 0.50% glucose. The feeding period was divided into the early (1-21 d) and later stages (22-42 d). The results showed that average daily gain (ADG) and feed conversion rate (F/G) in group F in later stage were significantly better than those in the control and antibiotic groups; the diarrhea rates in the groups containing CFA in both stages was significantly lower than that in the control and antibiotic groups, indicating that CFA was better than antibiotics to improve growth and decrease diarrhea rate for broilers. Pathogenic E. coli challenge significantly increased diarrhea rates and decreased ADG for broilers; however, CFA addition could alleviate the above negative responses by increasing gut Lactobacillus abundance and decreasing Shigella abundance. It can be concluded that CFA can replace antibiotics to regulate intestinal microbiota, reduce diarrhea rate, and improve broiler growth.


Asunto(s)
Dieta , Microbioma Gastrointestinal , Animales , Dieta/veterinaria , Pollos/fisiología , Escherichia coli , Suplementos Dietéticos/análisis , Antibacterianos/farmacología , Diarrea/veterinaria , Alimentación Animal/análisis
3.
Poult Sci ; 102(3): 102434, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36586389

RESUMEN

The aim of this study was to evaluate the effects of compound mycotoxin detoxifier (CMD) on alleviating the toxic effect of aflatoxin B1 (AFB1) for broiler growth performance. One-kilogram CMD consists of 667 g aflatoxin B1-degrading enzyme (ADE, 1,467 U/g), 200 g montmorillonite and 133 g compound probiotics (CP). The feeding experiment was divided into 2 stages (1-21 d and 22-42 d). In the early stage, a total of 300 one-day-old Ross broilers were randomly divided into 6 groups, 5 replications for each group, 10 broilers (half male and half female) in each replication. In the later feeding stage, about 240 twenty-two-day-old Ross broilers were randomly divided into 6 groups, 8 replications for each group, 5 broilers in each replication. Group A: basal diet; group B: basal diet with 40 µg/kg AFB1; group C: basal diet with 1 g/kg CMD; groups D, E, and F: basal diet with 40 µg/kg AFB1 plus 0.5, 1.0 and 1.5 g/kg CMD, respectively. The results indicated that AFB1 significantly decreased average daily gain (ADG), protein metabolic rate, organ index of thymus, bursa of Fabricius (BF), superoxide dismutase (SOD), glutathione peroxidase (GSH-PX) and catalase activities in serum, and increased AFB1 residues in serum and liver (P < 0.05). Hematoxylin-Eosin (HE) staining analysis of jejunum, liver and kidney showed that AFB1 caused the main pathological changes with different degrees of inflammatory cell infiltration. However, CMD additions could alleviate the negative effects of AFB1 on the above parameters. The gut microbiota analysis indicated that AFB1 could significantly increase the abundances of Staphylococcus-xylosu, Esherichia-coli-g-Escherichia-Shigella, and decrease Lactobacillus-aviarius abundance (P < 0.05), but which were adjusted to almost the same levels as the control group by CMD addition. The correlative analysis showed that Lactobacillus-aviarius abundance was positively correlated with ADG, SOD and BF (P < 0.05), whereas Staphylococcus-xylosus abundance was positively correlated with AFB1 residues in serum and liver (P < 0.05). In conclusion, CMD could keep gut microbiota stable, alleviate histological lesions, increase growth performance, and reduce mycotoxin toxicity. The optimal CMD addition should be 1 g/kg in AFB1-contaminated broilers diet.


Asunto(s)
Aflatoxinas , Microbioma Gastrointestinal , Micotoxinas , Femenino , Animales , Masculino , Aflatoxinas/metabolismo , Aflatoxina B1/toxicidad , Aflatoxina B1/metabolismo , Micotoxinas/toxicidad , Micotoxinas/metabolismo , Pollos , Dieta/veterinaria , Hígado , Superóxido Dismutasa/metabolismo , Alimentación Animal/análisis
4.
Toxins (Basel) ; 14(10)2022 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-36287934

RESUMEN

In order to alleviate the toxic effects of aflatoxins B1 (AFB1) on inflammatory responses in the intestine, liver, and kidney of broilers, the aflatoxin B1-degrading enzyme, montmorillonite, and compound probiotics were selected and combined to make a triple-action compound mycotoxin detoxifier (CMD). The feeding experiment was divided into two stages. In the early feeding stage (1−21 day), a total of 200 one-day-old Ross broilers were randomly divided into four groups; in the later feeding stage (22−42 day), 160 broilers aged at 22 days were assigned to four groups: Group A: basal diet (4.31 µg/kg AFB1); Group B: basal diet with 40 µg/kg AFB1; Group C: Group A plus 1.5 g/kg CMD; Group D: Group B plus 1.5 g/kg CMD. After the feeding experiment, the intestine, liver, and kidney tissues of the broilers were selected to investigate the molecular mechanism for CMD to alleviate the tissue damages. Analyses of mRNA abundances and western blotting (WB) of inflammatory factors, as well as immunohistochemical (IHC) staining of intestine, liver, and kidney tissues showed that AFB1 aggravated the inflammatory responses through NF-κB and TN-α signaling pathways via TLR pattern receptors, while the addition of CMD significantly inhibited the inflammatory responses. Phylogenetic investigation showed that AFB1 significantly increased interleukin-1 receptor-associated kinase (IRAK-1) and mitogen-activated protein kinase (MAPK) activities (p < 0.05), which were restored to normal levels by CMD addition, indicating that CMD could alleviate cell inflammatory damages induced by AFB1.


Asunto(s)
Aflatoxina B1 , Micotoxinas , Animales , Aflatoxina B1/análisis , Pollos , Micotoxinas/análisis , Bentonita/farmacología , FN-kappa B , Quinasas Asociadas a Receptores de Interleucina-1/farmacología , Filogenia , Hígado , Riñón , Intestinos/química , ARN Mensajero , Proteínas Quinasas Activadas por Mitógenos , Alimentación Animal/análisis
5.
Toxins (Basel) ; 14(10)2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36287939

RESUMEN

Aflatoxins B1 (AFB1), deoxynivalenol (DON) and zearalenone (ZEA) are the three most prevalent mycotoxins, whose contamination of food and feed is a severe worldwide problem. In order to alleviate the toxic effects of multi-mycotoxins (AFB1 + DON + ZEA, ADZ) on inflammation and apoptosis in swine jejunal epithelial cells (IPEC-J2), three species of probiotics (Bacillus subtilis, Saccharomyces cerevisiae and Pseudomonas lactis at 1 × 105 CFU/mL, respectively) were mixed together to make compound probiotics (CP), which were further combined with 400 µg/mL of glycyrrhinic acid (GA) to make bioactive materials (CGA). The experiment was divided into four groups, i.e., the control, ADZ, CGA and ADZ + CGA groups. The results showed that ADZ decreased cell viability and induced cytotoxicity, while CGA addition could alleviate ADZ-induced cytotoxicity. Moreover, the mRNA expressions of IL-8, TNF-α, NF-Κb, Bcl-2, Caspase-3, ZO-1, Occludin, Claudin-1 and ASCT2 genes, and protein expressions of TNF-α and Claudin-1 were significantly upregulated in ADZ group; while the mRNA abundances of IL-8, TNF-α, NF-Κb, Caspase-3, ASCT2 genes, and protein expressions of TNF-α and Claudin-1 were significantly downregulated in the ADZ + CGA group. In addition, the protein expressions of COX-2, ZO-1, and ASCT2 were significantly downregulated in the ADZ group, compared with the control group; whereas CGA co-incubation with ADZ could increase these protein expressions to recover to normal levels. This study indicated that CGA could alleviate cytotoxicity, apoptosis and inflammation in ADZ-induced IPEC-J2 cells and protect intestinal cell integrity from ADZ damages.


Asunto(s)
Micotoxinas , Probióticos , Tricotecenos , Zearalenona , Humanos , Micotoxinas/toxicidad , Zearalenona/toxicidad , Caspasa 3/metabolismo , Tricotecenos/metabolismo , Ocludina/genética , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-8/metabolismo , Claudina-1/metabolismo , FN-kappa B/metabolismo , Ciclooxigenasa 2/metabolismo , Línea Celular , Probióticos/farmacología , Células Epiteliales , Aflatoxina B1/toxicidad , Inflamación/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , ARN Mensajero/metabolismo
6.
Animals (Basel) ; 11(12)2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34944292

RESUMEN

The purpose of this study was to evaluate the effects of dietary supplementation with microalgae (Schizochytrium sp.) containing docosahexaenoic acid (DHA) on the antioxidant enzyme activity, physicochemical quality, fatty acid composition and volatile compounds of beef meat. Eighteen male Qaidamford cattle were randomly allocated into three treatments (n = 6): no micro-algae supplementation (Control group, C), 100 g microalgae supplementation per bull per day (FD1), and 200 g microalgae supplementation per bull per day (FD2), and fed for 49 days before slaughter. The results showed that, compared with the C group, the addition of DHA-rich microalgae to the diet could significantly increase the total antioxidant capacity (T-AOC) in meat. In the FD2 group, it was found that the concentration of glutathione peroxidase (GSH-Px) was significantly higher than that of the control group (p < 0.05). DHA-rich microalgae supplementation increased polyunsaturated fatty acid (PUFA), eicosapentaenoic acid (EPA; C20:5 n-6), DHA, EPA + DHA, and n-3 PUFA and reduced n-6:n-3 fatty acid ratio. Twenty-four volatile compounds identified in beef were mainly aldehydes, alcohols and ketones from the fingerprints. The contents of short-chain fatty aldehydes, 1-octen-3-ol and 2-pentylfuran, were higher in the FD2 group than in the other two groups. The microalgae diet improved the sensory attribute score of beef. The results demonstrated that dietary supplementation of DHA-rich microalgae improved the antioxidant status, increased the deposition of DHA and enhanced the characteristic flavor of beef.

7.
Oxid Med Cell Longev ; 2020: 5974157, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33163144

RESUMEN

Deoxynivalenol (DON) is the most common mycotoxin that frequently contaminates human food and animal feed, resulting in intestinal diseases and systemic immunosuppression. Glycyrrhinic acid (GA) exhibits various pharmacological activities. To investigate the protective mechanism of GA for DON-induced inflammation and apoptosis in IPEC-J2 cells, RNA-seq analysis was used in the current study. The IPEC-J2 cells were treated with the control group (CON), 0.5 µg/mL DON, 400 µg/mL GA, and 400 µg/mL GA+0.5 µg/mL DON (GAD) for 6 h. Results showed that 0.5 µg/mL DON exposure for 6 h could induce oxidative stress, inflammation, and apoptosis in IPEC-J2 cells. GA addition could specifically promote the proliferation of DON-induced IPEC-J2 cells in a dose- and time-dependent manner. In addition, GA addition significantly increased Bcl-2 gene expression (P < 0.05) and superoxide dismutase and catalase activities (P < 0.01) and decreased lactate dehydrogenase release, the contents of malonaldehyde, IL-8, and NF-κB (P < 0.05), the relative mRNA abundances of IL-6, IL-8, TNF-α, COX-2, NF-κB, Bax, and caspase 3 (P < 0.01), and the protein expressions of Bax and TNF-α. Moreover, a total of 1576, 289, 1398, and 154 differentially expressed genes were identified in CON vs. DON, CON vs. GA, CON vs. GAD, and DON vs. GAD, respectively. Transcriptome analysis revealed that MAPK, TNF, and NF-κB signaling pathways and some chemokines played significant roles in the regulation of inflammation and apoptosis induced by DON. GA may alleviate DON cytotoxicity via the TNF signaling pathway by downregulating IL-15, CCL5, and other gene expressions. These results indicated that GA could alleviate DON-induced oxidative stress, inflammation, and apoptosis via the TNF signaling pathway in IPEC-J2 cells.


Asunto(s)
Antiinflamatorios/farmacología , Apoptosis/efectos de los fármacos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Tricotecenos/efectos adversos , Humanos , Inflamación/inducido químicamente , Inflamación/metabolismo , Inflamación/patología , Tricotecenos/farmacología
8.
Ecotoxicol Environ Saf ; 205: 111376, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32961488

RESUMEN

Deoxynivalenol (DON) is extensively detected in many kinds of foods and feeds to harm human and animal health. This research aims to investigate the effect of chlorogenic acid (CGA) on alleviating inflammation and apoptosis of swine jejunal epithelial cells (IPEC-J2) triggered by DON. The results demonstrated that cell viability was decreased when DON concentrations increased or incubation time expanded. The pretreatment with CGA (40 µg/mL) for 1 h increased cell viability, decreased lactate dehydrogenase (LDH) release and apoptosis in cells triggered by DON at 0.5 µg/mL for 6 h, compared with the DON alone-treated cells. Moreover, the mRNA abundances of IL-8, IL-6, TNF-α, COX-2, caspase-3, Bax and ASCT2 genes, and protein expressions of COX-2, Bax and ASCT2 were significantly down-regulated; while the mRNA abundances of ZO-1, claudin-1, occludin, PePT1 and GLUT2 genes, and protein expressions of ZO-1, claudin-1 and PePT1 were significantly up-regulated in the CGA + DON group, compared with the DON alone group. This study indicated that CGA pretreatment alleviated cytotoxicity, inflammation and apoptosis in DON-triggered IPEC-J2 cells, and protected intestinal cell integrity from DON damages.


Asunto(s)
Ácido Clorogénico/farmacología , Sustancias Protectoras/farmacología , Tricotecenos/toxicidad , Animales , Apoptosis/efectos de los fármacos , Caspasa 3 , Recuento de Células , Línea Celular , Supervivencia Celular/efectos de los fármacos , Ácido Clorogénico/metabolismo , Células Epiteliales/efectos de los fármacos , Inflamación/metabolismo , Intestinos/efectos de los fármacos , Ocludina/genética , Porcinos
9.
J Appl Toxicol ; 40(10): 1362-1372, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32324309

RESUMEN

Deoxynivalenol (DON) is a common mycotoxin, which often induces oxidative stress and cytotoxicity in humans and animals. Astilbin (AST), as a natural antioxidant, exhibits multiple pharmacological functions. The aim of this study was to investigate the effects of AST on alleviating DON-induced cytotoxicity in intestinal porcine epithelial cells (IPEC-J2). The results demonstrated that 0.5 µg/mL DON stimulation for 6 hours induced oxidative stress, inflammation and apoptosis in IPEC-J2 cells. AST enhanced the cell viability in a dose- and time-dependent manner. The addition of 20 µg/mL AST significantly increased cell viability, superoxide dismutase and catalase activities, Bcl-2 gene expression and the Bcl-2/Bax ratio (P < .05), and decreased lactate dehydrogenase release, malondialdehyde content and the relative expressions of genes associated with inflammation and apoptosis such as interleukin-6 and -8, tumor necrosis factor-alpha, cyclooxygenase-2, nuclear factor-kappaB, Bax and caspase-3 (P < .05). Simultaneously, zonula occludens-1, claudin-1 and PepT1 gene expressions were upregulated and occludin, ASCT2 and GLUT2 gene expressions were downregulated by the addition of AST, compared with the DON group (P < .05). These results indicated that 20 µg/mL AST could ameliorate oxidative stress, inflammation and apoptosis by enhancing antioxidant enzyme activities and intestinal barrier function, and reducing the expressions of inflammation and apoptosis genes, as well as improve the barrier function and nutrient transport and absorption in DON-induced IPEC-J2 cells.


Asunto(s)
Antioxidantes/metabolismo , Apoptosis/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Flavonoles/metabolismo , Intestinos/efectos de los fármacos , Micotoxinas/toxicidad , Estrés Oxidativo/efectos de los fármacos , Tricotecenos/toxicidad , Animales , Células Cultivadas/efectos de los fármacos , Humanos , Modelos Animales , Porcinos
10.
Animals (Basel) ; 10(3)2020 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-32204369

RESUMEN

This study was conducted to investigate the effects of dietary supplementation with compound probiotics and berberine (CPB) on growth performance, nutrient digestibility and fecal microflora in weaned piglets. A total of 200 piglets 35 days old were randomly allocated to 5 groups, 4 replications in each group, and 10 piglets in each replication. Group A was the basal diet; group B was supplemented with antibiotics and zinc oxide; groups C, D and E were supplemented with 0.06%, 0.12% and 0.18% CPB, respectively. The experimental period was 42 d. The results indicated that there were no significant differences in average daily feed intake (ADFI), average daily gain (ADG) and feed conversion rate (FCR) among five groups (p > 0.05). However, mortality, diarrhea and rejection rates in the control group were higher than that in other groups. CPB could increase protein digestibility and serum IgG content (p < 0.05), while it could decrease serum urea nitrogen content and alkaline phosphatase activity (p < 0.05). Analysis of fecal microbiota showed that the relative abundances of Bacteroides and Firmicutes were increased, while the relative abundances of opportunistic pathogens such as Spirochaetae and Protebactreria were dramatically decreased in piglets fed with CPB or antibiotics, compared with the control group. Furthermore, CPB intervention increased the relative abundances of Prevotella_9, Megasphaera and Prevotella_2, while decreased the relative abundance of Prevotellaceae_NK3B31_group. Correlation analysis revealed that there was good correlation between serum indexes and fecal microbiota. It was suggested that CPB might be a promising antibiotic alternative for improving piglet health and immunity, decreasing mortality by positively altering gut microbiota.

11.
Ecotoxicol Environ Saf ; 194: 110420, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32151861

RESUMEN

In order to alleviate toxic effects of aflatoxins B1 (AFB1) and zearalenone (ZEA) on broiler production performance and gut microbiota, three kinds of compound probiotics (CP) were selected. The optimal ratios of Bacillus subtilis, Lactobacillus casei and Candida utilis in broiler diets were 7, 5 and 6 log CFU/g for ZEA biodegradation (CP1); 6, 7 and 7 log CFU/g for AFB1 biodegradation (CP2); 7, 6 and 7 log CFU/g for ZEA + AFB1 biodegradation (CP3). A total of 350 1-day-old Ross broilers were randomly divided into 7 groups. Group A was the basal diet, group B-G contained ZEA, AFB1, ZEA + AFB1, ZEA + CP1, AFB1+CP2, ZEA + AFB1+CP3, respectively. The experiment showed that AFB1 or AFB1+ZEA significantly decreased broiler production performance, damaged liver and jejunum, increased mycotoxin residues in broiler body; however, three kinds of compound probiotics additions could alleviate mycotoxin negative effects on the above parameters (p < 0.05). The gut microbiota analysis indicated that AFB1+ZEA increased jejunal microbial richness, but which were decreased to almost the same level as the control group by CP3 addition. CP3 addition significantly increased jejunal Firmicutes and Lactobacillus aviarius abundances. The correlative analysis showed that gut Lactobacillus aviarius abundance was positively correlated with average daily gain (ADG) of broilers (p < 0.05), while AFB1+ZEA addition decreased its relative abundance, indicating that CP3 addition increased broiler growth by increasing Lactobacillus aviarius abundance. AFB1 and ZEA residues in broiler body were negatively correlated with the gut beneficial bacterial abundances (p < 0.01), but positively correlated with the potentially harmful bacterial abundances (p < 0.05), which inferred that CP3 addition could decrease mycotoxin residues through positively regulating gut relative bacterial abundances. In conclusion, compound probiotics could keep gut microbiota stable, degrade mycotoxins, alleviate histological lesions, increase production performance and reduce mycotoxin toxicity for broilers.


Asunto(s)
Aflatoxina B1/toxicidad , Pollos/crecimiento & desarrollo , Microbioma Gastrointestinal/efectos de los fármacos , Probióticos/farmacología , Zearalenona/toxicidad , Alimentación Animal/análisis , Alimentación Animal/microbiología , Animales , Bacillus subtilis/aislamiento & purificación , Pollos/metabolismo , Dieta , Suplementos Dietéticos , Firmicutes/aislamiento & purificación , Distribución Aleatoria
12.
Toxins (Basel) ; 11(10)2019 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-31547122

RESUMEN

In order to remove zearalenone (ZEA) detriment-Bacillus subtilis, Candida utilis, and cell-free extracts from Aspergillus oryzae were used to degrade ZEA in this study. The orthogonal experiment in vitro showed that the ZEA degradation rate was 92.27% (p < 0.05) under the conditions that Candida utilis, Bacillus subtilis SP1, and Bacillus subtilis SP2 were mixed together at 0.5%, 1.0%, and 1.0%. When cell-free extracts from Aspergillus oryzae were combined with the above probiotics at a ratio of 2:1 to make mycotoxin-biodegradation preparation (MBP), the ZEA degradation rate reached 95.15% (p < 0.05). In order to further investigate the MBP effect on relieving the negative impact of ZEA for pig production performance, 120 young pigs were randomly divided into 5 groups, with 3 replicates in each group and 8 pigs for each replicate. Group A was given the basal diet with 86.19 µg/kg ZEA; group B contained 300 µg/kg ZEA without MBP addition; and groups C, D, and E contained 300 µg/kg ZEA added with 0.05%, 0.10%, and 0.15% MBP, respectively. The results showed that MBP addition was able to keep gut microbiota stable. ZEA concentrations in jejunal contents in groups A and D were 89.47% and 80.07% lower than that in group B (p < 0.05), indicating that MBP was effective in ZEA biodegradation. In addition, MBP had no significant effect on pig growth, nutrient digestibility, and the relative mRNA abundance of estrogen receptor alpha (ERα) genes in ovaries and the uterus (p > 0.05).


Asunto(s)
Aspergillus oryzae/metabolismo , Micotoxinas/metabolismo , Probióticos/farmacología , Porcinos/crecimiento & desarrollo , Zearalenona/metabolismo , Animales , Biodegradación Ambiental , Receptor alfa de Estrógeno/genética , Femenino , Microbioma Gastrointestinal , Porcinos/metabolismo , Vulva/patología
13.
Toxins (Basel) ; 11(1)2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30609651

RESUMEN

Zearalenone (ZEA) and aflatoxin B1 (AFB1) are two main kinds of mycotoxins widely existing in grain and animal feed that cause a lot of economic loss and health problems for animals and humans. In order to alleviate the cytotoxic effects of AFB1 and ZEA on swine jejunal epithelial cells (IPEC-J2), the combination of a cell-free supernatant of compound probiotics (CFSCP) with mycotoxin degradation enzymes (MDEs) from Aspergillus oryzae was tested. The results demonstrated that coexistence of AFB1 and ZEA had synergetic toxic effects on cell viability. The cell viability was decreased with mycotoxin concentrations increasing, but increased with incubation time extension. The necrotic cell rates were increased when 40 µg/L AFB1 and/or 500 µg/L ZEA were added, but the addition of CFSCP + MDE suppressed the necrotic effects of AFB1 + ZEA. The viable cell rates were decreased when AFB1 and/or ZEA were added: However, the addition of CFSCP + MDE recovered them. The relative mRNA abundances of Bcl-2, occludin, and ZO-1 genes were significantly upregulated, while Bax, caspase-3, GLUT2, ASCT2, PepT1, and IL6 genes were significantly downregulated by CFSCP + MDE addition, compared to the groups containing 40 µg/L AFB1 and 500 µg/L ZEA. This research provided an effective strategy in alleviating mycotoxin cytotoxicity and keeping normal intestinal cell structure and animal health.


Asunto(s)
Aflatoxina B1/toxicidad , Aspergillus oryzae/enzimología , Células Epiteliales/efectos de los fármacos , Probióticos/farmacología , Zearalenona/toxicidad , Animales , Proteínas Reguladoras de la Apoptosis/genética , Línea Celular , Supervivencia Celular/efectos de los fármacos , Células Epiteliales/metabolismo , Interleucina-6/genética , Yeyuno/citología , Proteínas de Transporte de Membrana/genética , Ocludina/genética , Porcinos , Proteína de la Zonula Occludens-1/genética
14.
J Toxicol Sci ; 43(6): 377-385, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29877214

RESUMEN

Aflatoxin B1 (AFB1) and zearalenone (ZEA) are the secondary toxic metabolites of fungi which contaminate a wide range of food and feedstuffs. Limiting exposure of humans and livestock to them is very essential. Among numerous methods of mycotoxin-degradation, biodegradation by microorganisms and enzymes is an effective and promising approach to eliminate their hazards. The present study aims to optimize the proportion of different species of beneficial microbes by means of response surface methodology (RSM) and its combination with mycotoxin-degradation enzymes. The results indicated that AFB1 and ZEA degradation rates were 38.38% and 42.18% by individual Bacillus subtilis (P < 0.05); however, AFB1 and ZEA degradation rates reached 45.49% and 44.90% (P < 0.05) when three probiotic species such as Bacillus subtilis, Lactobacillus casein and Candida utilis were at a ratio of 1:1:1, corresponding with the predictive value of the RSM model. The further experiment showed that AFB1 and ZEA degradation rates were 63.95% and 73.51% (P < 0.05) when the compound of three probiotic species was combined with mycotoxin-degradation enzymes from Aspergillus oryzae at a ratio of 3:2. This result indicated that the combination of probiotics with mycotoxin-degradation enzymes is a promising new approach for synchronous detoxification of AFB1 and ZEA.


Asunto(s)
Aflatoxina B1/metabolismo , Aflatoxina B1/toxicidad , Aspergillus oryzae/enzimología , Bacillus subtilis/metabolismo , Candida/metabolismo , Lacticaseibacillus casei/metabolismo , Probióticos , Zearalenona/metabolismo , Zearalenona/toxicidad , Aspergillus oryzae/metabolismo , Biotransformación , Contaminación de Alimentos , Hongos/metabolismo , Inactivación Metabólica , Proteolisis
15.
Biosci. j. (Online) ; 34(3): 769-777, mai/jun. 2018. tab, ilus, graf
Artículo en Inglés | LILACS | ID: biblio-966998

RESUMEN

Xylanase can hydrolyze xylan for reducing its anti-nutritional impact and improving nutrient availability, so obtaining suitable xylanase to degrade xylan is essential. Error-prone PCR and gene transformation were used in this study to obtain the ideal xylanase for degrading xylan effectively. The result showed that one mutant xylanase gene with high xylanase expression was obtained. After the mutant xylanase gene was connected with pGAPZA and transformed into Pichia pastoris (P. pastoris), the recombinant P. pastoris with mutant gene was found to produce higher xylanase activity (0.1480 U/mL) than that with the native xylanase gene (0.1360 U/mL) after 12 h incubation (p<0.05). The optimal temperature and pH of xylanase expressed by native and mutant genes were the same, i.e. 40°C and 5.50 (p<0.05). In addition, adding 0.2% Tween 80 during recombinant P. pastoris incubation could significantly increase xylanase yield by about 30-35% (p<0.05). The mutant xylanase could significantly increase xylose yield from wheat meal more than the native xylanase (p<0.05).


A xilanase pode hidrolisar o xilano para reduzir seu impacto antinutricional e melhorar a disponibilidade de nutrientes, portanto, obter xilanase adequada para degradar o xilano é essencial. A PCR propensa a erros e a transformação genética foram utilizadas neste estudo para obter a xilanase ideal para degradar eficazmente a xilana. O resultado mostrou que um gene mutante de xilanase com alta expressão de xilanase foi obtido. Depois que o gene mutante da xilanase foi conectado ao pGAPZA e transformado em Pichia pastoris (P. pastoris), o recombinante P. pastoris com o gene mutante produziu maior atividade de xilanase (0,1480 U / mL) do que com o gene nativo da xilanase (0,1360 U / mL) após 12 h de incubação (p <0,05). A temperatura e o pH ótimos da xilanase expressa pelos genes nativos e mutantes foram os mesmos, ou seja, 40 ºC e 5,50 (p <0,05). Além disso, a adição de Tween 80 a 0,2% durante a incubação de P. pastoris recombinante poderia aumentar significativamente o rendimento de xilanase em cerca de 30-35% (p <0,05). A xilanase mutante poderia aumentar significativamente o rendimento de xilose da farinha de trigo mais do que a xilanase nativa (p <0,05).


Asunto(s)
Xilanos , Reacción en Cadena de la Polimerasa , Bioquímica , Industria de Pulpa y Papel
16.
Arch Anim Nutr ; 71(2): 120-133, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28201936

RESUMEN

This study was carried out to investigate the effects of orally administrated Lactobacillus casei and Enterococcus faecalis on performance, immune function and gut microbiota of suckling piglets. Neonatal piglets (n = 120) were randomly assigned to 4 groups, with 30 suckling piglets in each group. The piglets were from 15 litters, one male and one female piglet were selected for each group in each litter. The Control group was administrated with normal saline, the other groups with L. casei or E. faecalis or a combination of L. casei and E. faecalis at a ratio of 3:1. Each piglet was orally administrated with 1, 2, 3 and 4 ml probiotics or normal saline at the age of 1, 7, 14 and 21 d, respectively. The piglets were weaned at the age of 21 d. The results showed that compared with the Control group, the average daily gain of piglets administrated with probiotics was significantly increased, and the diarrhoea rate and mortality were significantly decreased (p < 0.05). After supplementation of the combined probiotics, the protease activity in stomach, duodenum and colon was increased and in all supplemented groups, the immunoglobulin A concentration in plasma was significantly higher (p < 0.05). The combined probiotics significantly increased villus length and the expression level of transforming growth factor-ß in the jejunum (p < 0.05) but decreased the expression level of the jejunal tumour necrosis factor-α (p < 0.05). In addition, probiotics could regulate gut microbiota and increase microbial similarity coefficients for keeping piglet gut microbiota stable.


Asunto(s)
Enterococcus faecalis/inmunología , Microbioma Gastrointestinal , Lacticaseibacillus casei/inmunología , Probióticos , Sus scrofa/crecimiento & desarrollo , Sus scrofa/microbiología , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Relación Dosis-Respuesta a Droga , Femenino , Masculino , Distribución Aleatoria
17.
Anim Nutr ; 3(1): 19-24, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29767125

RESUMEN

In order to increase nutritive values of soybean meal (SBM), 3 species of microbes were used to ferment SBM. Through a 3 × 3 orthogonal design and parameter measurements of soybean peptide and anti-nutritional factor contents in the fermented soybean meal (FSBM), it was estimated that the best microbial proportion of Bacillus subtilis, Hansenula anomala and Lactobacillus casei was 2:1:2 for SBM fermentation (P < 0.05). The further piglet feeding experiment showed that 10% FSBM substitute for SBM had no significant effect on growth performance of suckling piglets (d 7-28) (P > 0.05). However, newly-weaned piglets (d 28-38) fed 10% FSBM and different levels of plasma protein obtained higher average daily gain (ADG) and feed conversion ratio (FCR), compared with those without FSBM but with 6% plasma protein (P < 0.05). Piglets (d 38-68) fed diets supplemented with FSBM and soybean protein concentrate (SBPC) at 3.75% and 7.5% respectively increased nutrient digestibility, fecal enzyme activity and lactic acid bacteria counts, and decreased fecal Escherichia coli counts (P < 0.05), compared with the control. These data indicated that FSBM had positive effects on nutrient digestibility and fecal microflora for piglets.

18.
Bioresour Technol ; 194: 165-71, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26188559

RESUMEN

In order to increase corn straw degradation, the straw was kept in the combined solution of 15% (w/w) lime supernatant and 2% (w/w) sodium hydroxide with liquid-to-solid ratio of 13:1 (mL/g) at 83.92°C for 6h; and then added with 3% (v/v) H2O2 for reaction at 50°C for 2h; finally cellulase (32.3 FPU/g dry matter) and xylanase (550 U/g dry matter) was added to keep at 50°C for 48 h. The maximal reducing sugars yield (348.77 mg/g) was increased by 126.42% (P<0.05), and the degradation rates of cellulose, hemicellulose and lignin in pretreated corn straw with enzymatic hydrolysis were increased by 40.08%, 45.71% and 52.01%, compared with the native corn straw with enzymatic hydrolysis (P<0.05). The following study indicated that the combined microbial fermentation and enzymatic hydrolysis could further increase straw degradation and reducing sugar yield (442.85 mg/g, P<0.05).


Asunto(s)
Bacterias/metabolismo , Metabolismo de los Hidratos de Carbono , Celulasa/metabolismo , Fermentación , Lignina/metabolismo , Temperatura , Residuos , Zea mays/metabolismo , Análisis de Varianza , Compuestos de Calcio/farmacología , Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Celulosa/metabolismo , Fermentación/efectos de los fármacos , Peróxido de Hidrógeno/farmacología , Concentración de Iones de Hidrógeno , Hidrólisis/efectos de los fármacos , Óxidos/farmacología , Hidróxido de Sodio/farmacología , Zea mays/efectos de los fármacos , Zea mays/ultraestructura
19.
Braz. arch. biol. technol ; 58(3): 337-342, May-Jun/2015. tab, graf
Artículo en Inglés | LILACS | ID: lil-748213

RESUMEN

Four kinds of neutral and alkaline protease genes from Aspergillus oryzae and Bacillus subtilis were isolated and shuffled. The shuffled genes were selected, inserted into pGAPZαA plasmid and transformed into Escherichia coli. The gene which could express high-activity protease was selected by screening the sizes of transparent zones around the colonies on casein plates. After an ideal protease gene was selected, it was sequenced and then transformed into Pichia pastoris X33. The result showed that the base in 1022th position of shuffled protease gene was changed from thymine to cytosine, inferring that cysteine was changed to arginine in the mutant protease. After 48 h incubation for the transformed P. pastoris with the mutant or native protease genes, the mutant protease activity was 36.4% higher than the native protease (P<0.05). The optimal pH and temperature of the mutant protease were 6.5-8.0 and 30-70°C, respectively, which indicated better stability than the native protease (P<0.05).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...