Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Small ; : e2401400, 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38881184

RESUMEN

Stem cell-related therapeutic technologies have garnered significant attention of the research community for their multi-faceted applications. To promote the therapeutic effects of stem cells, the strategies for cell microencapsulation in hydrogel microparticles have been widely explored, as the hydrogel microparticles have the potential to facilitate oxygen diffusion and nutrient transport alongside their ability to promote crucial cell-cell and cell-matrix interactions. Despite their significant promise, there is an acute shortage of automated, standardized, and reproducible platforms to further stem cell-related research. Microfluidics offers an intriguing platform to produce stem cell-laden hydrogel microparticles (SCHMs) owing to its ability to manipulate the fluids at the micrometer scale as well as precisely control the structure and composition of microparticles. In this review, the typical biomaterials and crosslinking methods for microfluidic encapsulation of stem cells as well as the progress in droplet-based microfluidics for the fabrication of SCHMs are outlined. Moreover, the important biomedical applications of SCHMs are highlighted, including regenerative medicine, tissue engineering, scale-up production of stem cells, and microenvironmental simulation for fundamental cell studies. Overall, microfluidics holds tremendous potential for enabling the production of diverse hydrogel microparticles and is worthy for various stem cell-related biomedical applications.

2.
Acta Biomater ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38897335

RESUMEN

Recent advances in bone tissue engineering have shown promise for bone repair post osteosarcoma excision. However, conflicting research on mesenchymal stem cells (MSCs) has raised concerns about their potential to either promote or inhibit tumor cell proliferation. It is necessary to thoroughly understand the interactions between MSCs and tumor cells. Most previous studies only focused on the interactions between cells within the tumor tissues. It has been challenging to develop an in vitro model of osteosarcoma excision sites replicating the complexity of the bone microenvironment and cell distribution. In this work, we designed and fabricated modular bioceramic scaffolds to assemble into a co-culture model. Because of the bone-like composition and mechanical property, tricalcium phosphate bioceramic could mimic the bone microenvironment and recapitulate the cell-extracellular matrix interaction. Moreover, the properties for easy assembly enabled the modular units to mimic the spatial distribution of cells in the osteosarcoma excision site. Under this co-culture model, MSCs showed a noticeable tumor-stimulating effect with a potential risk of tumor recurrence. In addition, tumor cells also could inhibit the osteogenic ability of MSCs. To undermine the stimulating effects of MSCs on tumor cells, we present the methods of pre-differentiated MSCs, which had lower expression of IL-8 and higher expression of osteogenic proteins. Both in vitro and in vivo studies confirm that pre-differentiated MSCs could maintain high osteogenic capacity without promoting tumor growth, offering a promising approach for MSCs' application in bone regeneration. Overall, 3D modular scaffolds provide a valuable tool for constructing hard tissue in vitro models. STATEMENT OF SIGNIFICANCE: Bone tissue engineering using mesenchymal stem cells (MSCs) and biomaterials has shown promise for bone repair post osteosarcoma excision. However, conflicting researches on MSCs have raised concerns about their potential to either promote or inhibit tumor cell proliferation. It remains challenges to develop in vitro models to investigate cell interactions, especially of osteosarcoma with high hardness and special composition of bone tissue. In this work, modular bioceramic scaffolds were fabricated and assembled to co-culture models. The interactions between MSCs and MG-63 were manifested as tumor-stimulating and osteogenesis-inhibiting, which means potential risk of tumor recurrence. To undermine the stimulating effect, pre-differentiated method was proposed to maintain high osteogenic capacity without tumor-stimulating, offering a promising approach for MSCs' application in bone regeneration.

3.
Mater Horiz ; 11(12): 2957-2973, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38586926

RESUMEN

Organoids, which are 3D multicellular constructs, have garnered significant attention in recent years. Existing organoid culture methods predominantly utilize natural and synthetic polymeric hydrogels. This study explored the potential of a composite hydrogel mainly consisting of calcium silicate (CS) nanowires and methacrylated gelatin (GelMA) as a substrate for organoid formation and functionalization, specifically for intestinal and liver organoids. Furthermore, the research delved into the mechanisms by which CS nanowires promote the structure formation and development of organoids. It was discovered that CS nanowires can influence the stiffness of the hydrogel, thereby regulating the expression of the mechanosensory factor yes-associated protein (YAP). Additionally, the bioactive ions released by CS nanowires in the culture medium could accelerate Wnt/ß-catenin signaling, further stimulating organoid development. Moreover, bioactive ions were found to enhance the nutrient absorption and ATP metabolic activity of intestinal organoids. Overall, the CS/GelMA composite hydrogel proves to be a promising substrate for organoid formation and development. This research suggested that inorganic biomaterials hold significant potential in organoid research, offering bioactivities, biosafety, and cost-effectiveness.


Asunto(s)
Compuestos de Calcio , Hidrogeles , Nanocables , Organoides , Silicatos , Silicatos/farmacología , Silicatos/química , Organoides/efectos de los fármacos , Organoides/metabolismo , Compuestos de Calcio/farmacología , Compuestos de Calcio/química , Hidrogeles/farmacología , Nanocables/química , Animales , Humanos , Materiales Biocompatibles/farmacología , Ratones , Gelatina/química , Hígado/metabolismo , Vía de Señalización Wnt/efectos de los fármacos , Vía de Señalización Wnt/fisiología , Intestinos/citología , Intestinos/efectos de los fármacos
4.
Natl Sci Rev ; 11(4): nwae035, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38463933

RESUMEN

Tissue regeneration is a complicated process that relies on the coordinated effort of the nervous, vascular and immune systems. While the nervous system plays a crucial role in tissue regeneration, current tissue engineering approaches mainly focus on restoring the function of injury-related cells, neglecting the guidance provided by nerves. This has led to unsatisfactory therapeutic outcomes. Herein, we propose a new generation of engineered neural constructs from the perspective of neural induction, which offers a versatile platform for promoting multiple tissue regeneration. Specifically, neural constructs consist of inorganic biomaterials and neural stem cells (NSCs), where the inorganic biomaterials endows NSCs with enhanced biological activities including proliferation and neural differentiation. Through animal experiments, we show the effectiveness of neural constructs in repairing central nervous system injuries with function recovery. More importantly, neural constructs also stimulate osteogenesis, angiogenesis and neuromuscular junction formation, thus promoting the regeneration of bone and skeletal muscle, exhibiting its versatile therapeutic performance. These findings suggest that the inorganic-biomaterial/NSC-based neural platform represents a promising avenue for inducing the regeneration and function recovery of varying tissues and organs.

5.
Am J Transl Res ; 15(9): 5850-5872, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37854226

RESUMEN

OBJECTIVE: This study aimed to identify and evaluate genes associated with cellular autophagy in steroid hormonal femoral head necrosis. METHODS: Autophagy-related differentially expressed genes (ARDEGs) in steroid-induced osteonecrosis of the femoral head (SONFH) were identified by obtaining the intersection of differentially expressed genes (DEGs) and autophagy-related genes in a SONFH Gene Expression Omnibus dataset. The ARDEGs were screened, and correlations between gene expression and immune cell infiltration were evaluated. Finally, the validation of hub genes was undertaken through quantitative real-time-PCR. RESULTS: A comparison of peripheral blood samples from patients with and without SONFH revealed 189 DEGs. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and gene set enrichment analyses showed that the DEGs were related to various biologic processes (e.g., neutrophil activation) and pathways (e.g., hematopoietic cell lineage). The expression levels of these genes were correlated with the infiltration of multiple immune cell types. Among the 189 putative autophagy-related genes associated with SONFH, three genes, RPL6, RPL9, and RPL23, were identified as candidate biomarkers or therapeutic targets based on network analysis and their correlations with immune cell subtypes. The quantitative real-time polymerase chain reaction results confirmed our prediction regarding the mRNA expression of RPL9 and RPS6. CONCLUSION: In this study, we identified 189 putative autophagy-related genes associated with SONFH, and the prediction of down-regulated genes RPL9 and RPS6 was validated using PCR, thereby expanding our understanding of the contribution of autophagy to SONFH.

6.
Stem Cells Int ; 2023: 5537610, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37771550

RESUMEN

Background: Long-term extensive use of glucocorticoids will lead to hormonal necrosis of the femoral head, and osteoblasts play an important role in the prevention of osteonecrosis. However, there is no complete cure for necrosis of the femoral head. Mesenchymal stem cell- (MSCs-) derived exosomes are widely used for the repair of various tissue lesions. Therefore, the aim of this study was to investigate the mechanism of dexamethasone- (DEX-) induced osteoblast apoptosis and the therapeutic effect of human umbilical cord MSC- (hucMSC-) derived exosome mimetic vesicles (EMVs) on osteoblast-induced apoptosis by DEX. Methods: The viability and apoptosis of primary MC3T3-E1 cells were determined by the Cell Counting Kit-8 (CCK-8), FITC-Annexin V/PI staining and immunoblot. The intracellular levels of reactive oxygen species (ROS) after DEX treatment were measured by 2', 7' -dichlorodihydrofluorescein diacetate (DCFH-DA) staining. In this study, hucMSC-EMVs and N-acetyl-l-cysteine (NAC) were used as therapeutic measures. The expression of B-cell lymphoma 2-associated X, Bcl 2, HO-1, and nuclear factor erythroid-derived 2-like 2 and MAPK- signaling pathway in osteogenic cell MC3T3-E1 cells treated with Dex was analyzed by the immunoblotting. Results: DEX significantly induced osteoblasts MC3T3-E1 apoptosis and ROS accumulation. MAPK-signaling pathway was activated in MC3T3-E1 after DEX treatment. hucMSC-EMVs intervention significantly downregulated DEX-induced MAPK-signaling pathway activation and ROS accumulation. In addition, hucMSC-EMVs can reduce the apoptosis levels in osteoblast MC3T3-E1 cells induced by DEX. Conclusions: Our study confirmed that hucMSC-EMVs regulates MAPK-signaling pathway and ROS levels to inhibit DEX-induced osteoblast apoptosis.

7.
Biomed Mater ; 18(5)2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37451254

RESUMEN

During the final stage of cancer metastasis, tumor cells embed themselves in distant capillary beds, from where they extravasate and establish secondary tumors. Recent findings underscore the pivotal roles of blood/lymphatic flow and shear stress in this intricate tumor extravasation process. Despite the increasing evidence, there is a dearth of systematic and biomechanical methodologies that accurately mimic intricate 3D microtissue interactions within a controlled hydrodynamic microenvironment. Addressing this gap, we introduce an easy-to-operate 3D spheroid-microvasculature-on-a-chip (SMAC) model. Operating under both static and regulated flow conditions, the SMAC model facilitates the replication of the biomechanical interplay between heterogeneous tumor spheroids and endothelium in a quantitative manner. Serving as anin vitromodel for metastasis mechanobiology, our model unveils the phenomena of 3D spheroid-induced endothelial compression and cell-cell junction degradation during tumor migration and expansion. Furthermore, we investigated the influence of shear stress on endothelial orientation, polarization, and tumor spheroid expansion. Collectively, our SMAC model provides a compact, cost-efficient, and adaptable platform for probing the mechanobiology of metastasis.


Asunto(s)
Neoplasias , Esferoides Celulares , Humanos , Neoplasias/patología , Microvasos , Endotelio , Dispositivos Laboratorio en un Chip , Microambiente Tumoral
8.
Waste Manag ; 166: 152-162, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37172516

RESUMEN

Food waste can be converted into insectile fatty acids (FAs) by the larvae of black soldier fly (BSFL), Hermetia illucens, for use in the feed sector or as a source of biodiesel. However, waste oil was less decomposed than carbohydrate or protein in frass due to the limitation of larval lipid metabolism. In this study, 10 yeast strains were screened, corresponding to six species, to examine their capacity of improving lipid transformation performance by BSFL. The species of Candida lipolytica was superior to the other five species, which exhibited significantly higher lipid reduction rate (95.0-97.1 %) than the control (88.7 %), and the larval FA yields achieved 82.3-115.5 % of the food waste FA matters, suggesting that BSFL not only transformed waste oil but also biosynthesized FAs from waste carbohydrate and other substances. Further, the CL2 strain of Candida lipolytica was examined for treating food waste containing high lipid content (16-32 %). The lipid removal rate was found improved from 21.4 to 42.3 % (control) to 80.5-93.3% in the waste containing 20-32 % lipid. The upper limit of lipid content that could be endured by BSFL was ≈16 %, and the CL2-enrichment elevated the upper limit to ≈24 %. Fungal community analysis indicated that Candida spp. accounted for the lipid removal improvement. The Candida spp. CL2 strain may facilitate the lipid reduction and transformation by BSFL through microbial catabolizing and assimilation of waste FAs. Altogether, this study suggests that yeast enrichment is feasible in improving lipid transformation by BSFL especially for food waste exhibiting high lipid content.


Asunto(s)
Dípteros , Eliminación de Residuos , Animales , Larva , Saccharomyces cerevisiae , Alimentos , Ácidos Grasos , Carbohidratos
9.
Mol Pharm ; 20(4): 2017-2028, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36896581

RESUMEN

While the effects of nanoparticle properties such as shape and size on cellular uptake are widely studied, influences exerted by drug loading have so far been ignored. In this work, nanocellulose (NC) coated by Passerini reaction with poly(2-hydroxy ethyl acrylate) (PHEA-g-NC) was loaded with various amounts of ellipticine (EPT) by electrostatic interactions. The drug-loading content was determined by UV-vis spectroscopy to range between 1.68 and 8.07 wt %. Dynamic light scattering and small-angle neutron scattering revealed an increased dehydration of the polymer shell with increasing drug-loading content, which led to higher protein adsorption and more aggregation. The nanoparticle with the highest drug-loading content, NC-EPT8.0, displayed reduced cellular uptake in U87MG glioma cells and MRC-5 fibroblasts. This also translated into reduced toxicity in these cell lines as well as the breast cancer MCF-7 and the macrophage RAW264.7 cell lines. Additionally, the toxicity in U87MG cancer spheroids was unfavorable. The nanoparticle with the best performance was found to have intermediate drug-loading content where the cellular uptake was adequately high while each nanoparticle was able to deliver a sufficiently toxic amount into the cells. Medium drug loading did not hinder uptake into cells while maintaining sufficiently toxic drug concentrations. It was concluded that while striving for a high drug-loading content is appropriate when designing clinically relevant nanoparticles, it needs to be considered that the drug can cause changes in the physicochemical properties of the nanoparticles that might cause unfavorable effects.


Asunto(s)
Neoplasias de la Mama , Nanopartículas , Humanos , Femenino , Polímeros/química , Portadores de Fármacos/química , Línea Celular , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Macrófagos , Nanopartículas/química
10.
Molecules ; 28(4)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36838890

RESUMEN

Although black soldier fly larvae (BSFL) can convert food waste into insectile fatty acids (FAs), the chronological and diet-dependent transformation of larval FAs has yet to be determined. This study focused on the dynamics of larval FA profiles following food waste treatment and characterized factors that may drive FA composition and bioaccumulation. Larval FA matters peaked on Day 11 as 7.7 ± 0.7% of food waste dry matter, maintained stably from Day 11-19, and decreased slightly from Day 19-21. The BSFL primarily utilized waste carbohydrates for FA bioconversion (Day 0-11) and shifted to waste FAs (Day 7-17) when the carbohydrates were close to depletion. The optimal time window for larvae harvest was Days 17-19, which fulfilled both targets of waste oil removal and larval FA transformation. Larval FAs were dominated by C12:0, followed by C18:2, C18:1, and C16:0. The waste-reducing carbohydrate primarily accounted for larval FA bioaccumulation (r = -0.947, p < 0.001). The increase in diet carbohydrate ratio resulted in the elevation of larval C12:0 yield, which indicated that larval C12:0-FA was primarily biosynthesized from carbohydrates and further transformed from ≥C16 FAs. This study elucidates the bioaccumulation process of larval FAs for food waste treatment and highlights the importance of waste carbohydrates for both the composition and transformation of larval FAs.


Asunto(s)
Dípteros , Eliminación de Residuos , Animales , Larva , Alimentos , Ácidos Grasos , Carbohidratos
11.
Biochem Biophys Res Commun ; 640: 134-141, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36508926

RESUMEN

Ruthenium complexes have been widely studied as potential alternatives to platinum-type anticancer drugs due to their unique medical properties such as high selectivity, strong ability to inhibit solid tumour metastasis. However, non-specific biodistribution, and weak lethality of ruthenium to cancer cells limit its use in medical application. Drug delivery systems offer the ability to integrate multiple drugs in one system, which is particularly important to enhance the chemotherapeutic efficacy and to potentially achieve a synergistic effect of both drugs. Here, we report a dual drug nanocarrier that is based on a self-assembled biodegradable block copolymer, where the ruthenium complex (RAPTA-C) is chemically attached to the polymer chain, while another drug, paclitaxel (PTX), is entrapped in the core of the micelle. The dual drug delivery system was studied via in vitro tests using MDA-MB-231 breast cancer cells and it was observed that RAPTA-C in combination with PTX significantly enhanced anti-tumour and anti-metastasis activity.


Asunto(s)
Nanopartículas , Neoplasias , Rutenio , Humanos , Paclitaxel/farmacología , Paclitaxel/química , Fructosa , Distribución Tisular , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Micelas , Nanopartículas/química , Polímeros , Portadores de Fármacos/química
12.
Stem Cell Res Ther ; 13(1): 312, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35841000

RESUMEN

BACKGROUND: Exosomes derived from mesenchymal stem cells (MSCs) have shown to have effective application prospects in the medical field, but exosome yield is very low. The production of exosome mimetic vesicles (EMVs) by continuous cell extrusion leads to more EMVs than exosomes, but whether the protein compositions of MSC-derived EMVs (MSC-EMVs) and exosomes (MSC-exosomes) are substantially different remains unknown. The purpose of this study was to conduct a comprehensive proteomic analysis of MSC-EMVs and MSC-exosomes and to simply explore the effects of exosomes and EMVs on wound healing ability. This study provides a theoretical basis for the application of EMVs and exosomes. METHODS: In this study, EMVs from human umbilical cord MSCs (hUC MSCs) were isolated by continuous extrusion, and exosomes were identified after hUC MSC ultracentrifugation. A proteomic analysis was performed, and 2315 proteins were identified. The effects of EMVs and exosomes on the proliferation, migration and angiogenesis of human umbilical vein endothelial cells (HUVECs) were evaluated by cell counting kit-8, scratch wound, transwell and tubule formation assays. A mouse mode was used to evaluate the effects of EMVs and exosomes on wound healing. RESULTS: Bioinformatics analyses revealed that 1669 proteins in both hUC MSC-EMVs and hUC MSC-exosomes play roles in retrograde vesicle-mediated transport and vesicle budding from the membrane. The 382 proteins unique to exosomes participate in extracellular matrix organization and extracellular structural organization, and the 264 proteins unique to EMVs target the cell membrane. EMVs and exosomes can promote wound healing and angiogenesis in mice and promote the proliferation, migration and angiogenesis of HUVECs. CONCLUSIONS: This study presents a comprehensive proteomic analysis of hUC MSC-derived exosomes and EMVs generated by different methods. The tissue repair function of EMVs and exosomes was herein verified by wound healing experiments, and these results reveal their potential applications in different fields based on analyses of their shared and unique proteins.


Asunto(s)
Exosomas , Células Madre Mesenquimatosas , Animales , Exosomas/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Células Madre Mesenquimatosas/metabolismo , Ratones , Proteómica , Cordón Umbilical
13.
Adv Sci (Weinh) ; 9(21): e2103332, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35611998

RESUMEN

To fully investigate cellular responses to stimuli and perturbations within tissues, it is essential to replicate the complex molecular interactions within the local microenvironment of cellular niches. Here, the authors introduce Alginate-based tissue engineering (ALTEN), a biomimetic tissue platform that allows ex vivo analysis of explanted tissue biopsies. This method preserves the original characteristics of the source tissue's cellular milieu, allowing multiple and diverse cell types to be maintained over an extended period of time. As a result, ALTEN enables rapid and faithful characterization of perturbations across specific cell types within a tissue. Importantly, using single-cell genomics, this approach provides integrated cellular responses at the resolution of individual cells. ALTEN is a powerful tool for the analysis of cellular responses upon exposure to cytotoxic agents and immunomodulators. Additionally, ALTEN's scalability using automated microfluidic devices for tissue encapsulation and subsequent transport, to enable centralized high-throughput analysis of samples gathered by large-scale multicenter studies, is shown.


Asunto(s)
Dispositivos Laboratorio en un Chip , Ingeniería de Tejidos , Alginatos , Biomimética , Comunicación Celular , Ingeniería de Tejidos/métodos
14.
Asian J Soc Psychol ; 2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35603137

RESUMEN

As the coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), continues to rage, disclosure of exposure to the virus is of great significance to safety management, especially considering the long latency of the disease. We conducted a survey based on terror management theory of 2,542 people in 71 cities, representing all provinces in mainland China. The results revealed that fear of being isolated influenced disclosure of exposure to the virus and that this influence was mediated by defensive impression management motivation. An inclusive climate buffered both the direct and the indirect effects of fear of isolation on disclosure behaviour via defensive impression management motivation. The implications of these findings for research and safety management during the COVID-19 pandemic are discussed.

15.
Materials (Basel) ; 15(6)2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35329654

RESUMEN

The use of bulk solid-waste iron tailing (IOT), red mud (RM), and oyster shells to prepare cemented paste backfill (CPB) can effectively solve the ecological problems caused by industrial solid waste storage and improve the utilization rate of such materials. In this study, a new type of CPB was prepared by partially replacing slag with RM, with calcined oyster shell (COS) as the alkaline activator and IOT as aggregate. The central composite design (CCD) method was used to design experiments to predict the effects of the COS dosage, RM substitution rate, solid mass, and aggregate-binder ratio using 28-dUCS, slump, and the cost of CPB. In this way, a regression model was established. The quantum genetic algorithm (QGA) was used to optimize the regression model, and X-ray diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscope (SEM), and energy dispersive spectroscopy (EDS) microscopic tests are performed on CPB samples of different ages with the optimal mix ratio. The results showed that COS is a highly active alkaline substance that provides an alkaline environment for polymerization reactions. In the alkaline medium, the hematite and goethite in RM and quartz in IOT gradually dissolved and participated in the process of polymerization. The main polymerization products of the CPB samples are calcium-silicate-hydrogel (C-S-H), calcium-aluminosilicate-hydrogel (C-A-S-H), and aluminosilicate crystals such as quartz, albite, and foshagite. These products are intertwined and filled in the internal pores of the CPB, enabling the pore contents to decrease and the interiors of the CPB samples to gradually connect into a whole. In this way, the compressive strength is increased.

16.
Pharmaceutics ; 15(1)2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36678718

RESUMEN

Drug-delivery vehicles have garnered immense interest in recent years due to unparalleled progress made in material science and nanomedicine. However, the development of stimuli-responsive devices with controllable drug-release systems (DRSs) is still in its nascent stage. In this paper, we designed a two-way controlled drug-release system that can be promoted and prolonged, using the external stimulation of near-infrared light (NIR) and protein coating. A hierarchical nanostructure was fabricated using upconversion nanoparticles (UCNPs)-mesoporous silica as the core-shell structure with protein lysozyme coating. The mesoporous silica shell provides abundant pores for the loading of drug molecules and a specific type of photosensitive molecules. The morphology and the physical properties of the nanostructures were thoroughly characterized. The results exhibited the uniform core-shell nanostructures of ~four UCNPs encapsulated in one mesoporous silica nanoparticle. The core-shell nanoparticles were in the spherical shape with an average size of 200 nm, average surface area of 446.54 m2/g, and pore size of 4.6 nm. Using doxorubicin (DOX), a chemotherapy agent as the drug model, we demonstrated that a novel DRS with capacity of smart modulation to promote or inhibit the drug release under NIR light and protein coating, respectively. Further, we demonstrated the therapeutic effect of the designed DRSs using breast cancer cells. The reported novel controlled DRS with dual functionality could have a promising potential for chemotherapy treatment of solid cancers.

17.
Front Cardiovasc Med ; 8: 766513, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34901226

RESUMEN

Understanding how platelets can sense and respond to hemodynamic forces in disturbed blood flow and complexed vasculature is crucial to the development of more effective and safer antithrombotic therapeutics. By incorporating diverse structural and functional designs, microfluidic technologies have emerged to mimic microvascular anatomies and hemodynamic microenvironments, which open the floodgates for fascinating platelet mechanobiology investigations. The latest endothelialized microfluidics can even recapitulate the crosstalk between platelets and the circulatory system, including the vessel walls and plasma proteins such as von Willebrand factor. Hereby, we highlight these exciting microfluidic applications to platelet mechanobiology and platelet-circulatory system interplay as implicated in thrombosis. Last but not least, we discuss the need for microfluidic standardization and summarize the commercially available microfluidic platforms for researchers to obtain reproducible and consistent results in the field.

18.
Biofabrication ; 14(1)2021 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-34638112

RESUMEN

Peristalsis in the digestive tract is crucial to maintain physiological functions. It remains challenging to mimic the peristaltic microenvironment in gastrointestinal organoid culture. Here, we present a method to model the peristalsis for human colon tumor organoids on a microfluidic chip. The chip contains hundreds of lateral microwells and a surrounding pressure channel. Human colon tumor organoids growing in the microwell were cyclically contracted by pressure channel, mimicking thein vivomechano-stimulus by intestinal muscles. The chip allows the control of peristalsis amplitude and rhythm and the high throughput culture of organoids simultaneously. By applying 8% amplitude with 8 ∼ 10 times min-1, we observed the enhanced expression of Lgr5 and Ki67. Moreover, ellipticine-loaded polymeric micelles showed reduced uptake in the organoids under peristalsis and resulted in compromised anti-tumor efficacy. The results indicate the importance of mechanical stimuli mimicking the physiological environment when usingin vitromodels to evaluate nanoparticles. This work provides a method for attaining more reliable and representative organoids models in nanomedicine.


Asunto(s)
Neoplasias del Colon , Organoides , Neoplasias del Colon/metabolismo , Humanos , Dispositivos Laboratorio en un Chip , Microfluídica , Peristaltismo , Microambiente Tumoral
19.
Adv Sci (Weinh) ; 8(21): e2102418, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34494727

RESUMEN

Mammary tumor organoids have become a promising in vitro model for drug screening and personalized medicine. However, the dependency on the basement membrane extract (BME) as the growth matrices limits their comprehensive application. In this work, mouse mammary tumor organoids are established by encapsulating tumor pieces in non-adhesive alginate. High-throughput generation of organoids in alginate microbeads is achieved utilizing microfluidic droplet technology. Tumor pieces within the alginate microbeads developed both luminal- and solid-like structures and displayed a high similarity to the original fresh tumor in cellular phenotypes and lineages. The mechanical forces of the luminal organoids in the alginate capsules are analyzed with the theory of the thick-wall pressure vessel (TWPV) model. The luminal pressure of the organoids increase with the lumen growth and can reach 2 kPa after two weeks' culture. Finally, the mammary tumor organoids are treated with doxorubicin and latrunculin A to evaluate their application as a drug screening platform. It is found that the drug response is related to the luminal size and pressures of organoids. This high-throughput culture for mammary tumor organoids may present a promising tool for preclinical drug target validation and personalized medicine.


Asunto(s)
Alginatos/química , Ensayos Analíticos de Alto Rendimiento/métodos , Neoplasias Mamarias Animales/patología , Animales , Antineoplásicos/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Técnicas de Cultivo de Célula/instrumentación , Técnicas de Cultivo de Célula/métodos , Supervivencia Celular/efectos de los fármacos , Dimetilpolisiloxanos/química , Doxorrubicina/farmacología , Femenino , Dispositivos Laboratorio en un Chip , Neoplasias Mamarias Animales/metabolismo , Ratones , Organoides/citología , Organoides/efectos de los fármacos , Organoides/metabolismo , Tiazolidinas/farmacología , Células Tumorales Cultivadas
20.
Biointerphases ; 16(4): 041002, 2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34261325

RESUMEN

Cellular uptake of nanoparticles plays a crucial role in cell-targeted biomedical applications. Despite abundant studies trying to understand the interaction between nanoparticles and cells, the influence of cell geometry traits such as cell spreading area and cell shape on the uptake of nanoparticles remains unclear. In this study, poly(vinyl alcohol) is micropatterned on polystyrene cell culture plates using ultraviolet photolithography to control the spreading area and shape of individual cells. The effects of these factors on the cellular uptake of poly(N-(2-hydroxypropyl)methacrylamide)-based micelles were investigated at a single-cell level. Human carcinoma MCF-7 and A549 cells as well as normal Hs-27 and MRC-5 fibroblasts were cultured on micropatterned surfaces. MCF-7 and A549 cells, both with larger sizes, had a higher total micelle uptake. However, the uptake of Hs-27 and MRC-5 cells decreased with increasing spreading area. In terms of cell shapes, MCF-7 and A549 cells with round shapes showed a higher micelle uptake, while those with a square shape had a lower cellular uptake. On the other hand, Hs-27 and MRC-5 cells showed opposite behaviors. The results indicate that the geometry of cells can influence the nanoparticle uptake and may shed light on the design of functional nanoparticles.


Asunto(s)
Micelas , Nanopartículas , Acrilamidas , Técnicas de Cultivo de Célula , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA