Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 14: 1293411, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38046616

RESUMEN

Polysaccharides and saponins are the main active components of Polygonati Rhizoma. Studying the molecular mechanism of their synthesis pathway is helpful in improving the content of active components at the molecular level. At present, transcriptome analysis of three Polygonatum species (Polygonatum sibiricum Red., Polygonatum cyrtonema Hua, Polygonatum kingianum Coll. et Hemsl.) has been reported, but no comparative study has been found on the transcriptome data of the three species. Transcriptome sequencing was performed on the rhizomes of three Polygonatum species based on high-throughput sequencing technology, and all transcripts were assembled. A total of 168,108 unigenes were generated after the removal of redundancy, of which 121,642 were annotated in seven databases. Through differential analysis and expression analysis of key enzyme genes in the synthesis pathway of three Polygonatum polysaccharides and steroidal saponins, 135 differentially expressed genes encoding 18 enzymes and 128 differentially expressed genes encoding 28 enzymes were identified, respectively. Numerous transcription factors are involved in the carbohydrate synthesis pathway. Quantitative real-time PCR was used to further verify the gene expression level. In this paper, we present a public transcriptome dataset of three medicinal plants of the genus Polygonatum, and analyze the key enzyme genes of polysaccharide and steroidal saponins synthesis pathway, which lays a foundation for improving the active component content of Polygonati Rhizoma by molecular means.

3.
Int J Biol Macromol ; 225: 1543-1554, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36436603

RESUMEN

Atractylodes lancea (Thunb.) DC. is an important medicinal plant mainly distributed in China. A. lancea is rich in volatile oils and has a significant effect on various diseases, including coronavirus disease 2019 (COVID-19). Based on the signature constituents of volatile oils, A. lancea is divided into two chemotypes: the Dabieshan and Maoshan chemotype. Gas chromatography-mass spectrometry (GC-MS) results revealed that the hinesol and ß-eudesmol contents in the Dabieshan chemotype were higher than those in the Maoshan chemotype. Next-generation sequencing (NGS) and single-molecule real-time (SMRT) sequencing technologies were combined to investigate the molecular mechanisms of sesquiterpenoid biosynthesis in A. lancea. A total of 42 differentially expressed genes (DEGs) for terpenoid biosynthesis were identified in the two chemotype groups, and nine full-length terpene synthase (TPS) genes were identified. Subcellular localization revealed that AlTPS1 and AlTPS2 proteins were localized in the nucleus and endoplasmic reticulum. They use FPP as a substrate to generate sesquiterpenoids. AlTPS1 catalyzes biosynthesis of elemol while AlTPS2 is observed to perform ß-farnesene synthase activity. This study provides information for understanding the differences in the accumulation of terpenoids in two chemotypes of A. lancea and lays a foundation for further elucidation of the molecular mechanism of sesquiterpenoid biosynthesis.


Asunto(s)
Atractylodes , COVID-19 , Aceites Volátiles , Sesquiterpenos , Atractylodes/química , Sesquiterpenos/metabolismo , Aceites Volátiles/química , Perfilación de la Expresión Génica
4.
J Sep Sci ; 45(5): 1067-1079, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34963032

RESUMEN

Traditional Chinese medicine is made from the rhizome of Atractylodes lancea (Thunb.) DC. (Compositae), known as Cangzhu. In this study, gas chromatography-mass spectrometry was used to identify and quantify the volatile oils of different organs of A. lancea from four regions of China: Jiangsu, Anhui, Henan, and Hubei provinces. The volatile oils of A. lancea were qualitatively and quantitatively characterized using gas chromatography-mass spectrometry combined with laser microdissection. The results identified 21 components in A. lancea, the majority of the components were found in the rhizomes, followed by the fibrous roots, flowers, leaves, and stems. According to the contents of volatile oils in A. lancea, it was divided into Dabieshan (mainly includes hinesol and ß-eudesmol) and Maoshan types (mainly includes atractylon and atractylodin), and the ratios of hinesol:ß-eudesmol:atractylon:atractylodin were 17.06:4.55:0:1, 12.66:11.71:0.99:1, 7.43:6.23:0:1, and 0.13:0.16:1.52:1 in A. lancea from AH, HN, HB, and JS, respectively. Tissue-specific study indicated that Dabieshan type mainly includes elemol, hinesol, and ß-eudesmol in the periderm and secretory cavities of A. lancea, whereas Maoshan type mainly includes atractylon, atractylodin, little hinesol, and ß-eudesmol in the secretory cavities. Conversely, no volatile oils were detected in the cortex, phloem, xylem, vascular ray, or pith. This study provides a foundation for further evaluation and utilization of A. lancea.


Asunto(s)
Atractylodes , Aceites Volátiles , Atractylodes/química , Cromatografía de Gases y Espectrometría de Masas , Rayos Láser , Microdisección , Aceites Volátiles/química
5.
Protein Pept Lett ; 29(2): 156-165, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34825863

RESUMEN

BACKGROUND: Cangzhu (Atractylodes lancea), a valuable and common traditional Chinese medicinal herb, is primarily used as an effective medicine with various health-promoting effects. The main pharmacological bioactive ingredients in the rhizome of A. lancea are terpenoids. Acetyl-CoA C-acetyltransferase (AACT) is the first enzyme in the terpenoid synthesis pathway and catalyzes two units of acetyl-CoA into acetoacetyl-CoA. OBJECTIVE: The objective of the present work was to clone and identify function of AlAACT from Atractylodes lancea. METHODS: A full-length cDNA clone of AlAACT was isolated using PCR and expressed in Escherichia coli. The expressed protein was purified using Ni-NTA agarose column using standard protocols. AlAACT was transiently expressed in N. benthamiana leaves to determine their subcellular location. The difference in growth between recombinant bacteria and control bacteria under different stresses was observed using the droplet plate experiment. RESULTS: In this study, a full-length cDNA of AACT (AlAACT) was cloned from A. lancea, which contains a 1,227 bp open reading frame and encodes a protein with 409 amino acids. Bioinformatic and phylogenetic analysis clearly suggested that AlAACT shared high similarity with AACTs from other plants. The recombinant protein pET32a(+)/AlAACT was successfully expressed in Escherichia coli BL21 (DE3) cells induced with 0.4 mM IPTG at 30°C as the optimized condition. The recombinant enzyme pET-32a-AlAACT was purified using the Ni-NTA column based on the His-tag, and the molecular weight was determined to be 62 kDa through SDS-PAGE and Western Blot analysis. The recombinant protein was eluted with 100, 300, and 500 mM imidazole; most of the protein was eluted with 300 mM imidazole. Under mannitol stress, the recombinant pET-32a- AlAACT protein showed a substantial advantage in terms of growth rates compared to the control. However, this phenomenon was directly opposite under NaCl abiotic stress. Subcellular localization showed that AlAACT localizes to the nucleus and cytoplasm. CONCLUSION: The expression and purification of recombinant enzyme pET-32a-AlAACT were successful, and the recombinant strain pET-32a-AlAACT in showed better growth in a drought stress. The expression of AlAACT-EGFP fusion protein revealed its localization in both nuclear and cytoplasm compartments. This study provides an important foundation for further research into the effects of terpenoid biosynthesis in A. lancea.


Asunto(s)
Atractylodes , Acetil-CoA C-Acetiltransferasa/genética , Acetil-CoA C-Acetiltransferasa/metabolismo , Atractylodes/genética , Atractylodes/metabolismo , Clonación Molecular , ADN Complementario/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Imidazoles/metabolismo , Filogenia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Terpenos
6.
Planta ; 255(1): 8, 2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34845523

RESUMEN

MAIN CONCLUSION: Two squalene synthase genes AlSQS1 and AlSQS2 were isolated from Atractylodes lancea and functionally characterized using in vitro enzymatic reactions. Atractylodes lancea is a traditional herb used for the treatment of rheumatic diseases, gastric disorders, and influenza. Its major active ingredients include sesquiterpenoids and triterpenes. Squalene synthase (SQS; EC 2.5.1.21) catalyzes the first enzymatic step in the central isoprenoid pathway towards sterol and triterpenoid biosynthesis. In this study, we aimed to investigate two SQSs from A. lancea using cloning and in vitro enzymatic characterization. Bioinformatics and phylogenetic analyses revealed that the AlSQSs exhibited high homology with other plant SQSs. Furthermore, AlSQS1 was observed to be localized in both the nucleus and cytoplasm, whereas AlSQS2 was localized in the cytoplasm and endoplasmic reticulum. To obtain soluble recombinant enzymes, AlSQS1 and AlSQS2 were successfully expressed as glutathione S-transferase (GST)-tagged fusion proteins in Escherichia coli Transetta (DE3). Approximately 68 kDa recombinant proteins were obtained using GST-tag affinity chromatography and Western blot analysis. Results of the in vitro enzymatic reactions established that both AlSQS1 and AlSQS2 were functional, which verifies their catalytic ability in converting two farnesyl pyrophosphates to squalene. The expression patterns of AlSQS and selected terpenoid genes were also investigated in two A. lancea chemotypes using available RNA sequencing data. AlSQS1 and AlSQS2, which showed relatively similar expression in the three tissues, were more highly expressed in the stems than in the leaves and rhizomes. Methyl jasmonate (MeJA) was used as an elicitor to analyze the expression profiles of AlSQSs. The results of qRT-PCR analysis revealed that the gene expression of AlSQS1 and AlSQS2 plummeted at lowest value at 12 h and reached its peak at 24 h. This study is the first report on the cloning, characterization, and expression of SQSs in A. lancea. Therefore, our findings contribute novel insights that may be useful for future studies regarding terpenoid biosynthesis in A. lancea.


Asunto(s)
Atractylodes , Farnesil Difosfato Farnesil Transferasa , Atractylodes/enzimología , Atractylodes/genética , Clonación Molecular , Farnesil Difosfato Farnesil Transferasa/genética , Genes de Plantas , Filogenia , Análisis de Secuencia de ARN , Escualeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA